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Speech processing has come a long way since the year of 1947, when R. K. Potter, G. A. 
Kopp, and H. Green from Bell Labs introduced the sound spectrograph, the fi rst instrument 
to produce human voice-prints in the short-time Fourier-transform domain. Ever since, 
speech recognition has been constantly evolving. From isolated word recognition with small 
vocabulary in the 1950s and medium vocabulary in the 1960s, speech recognition advanced 
through connected words recognition with large vocabulary in the 1970s and 1980s, to very 
large vocabulary continuous speech recognition in the 1990s and 2000s. 

During the 1950s, speaker recognition systems were capable of recognizing only 10 isolated 
words or digits. The applications were speaker dependent, meaning that systems were capable 
to recognize word utterances from a single speaker. In 1952, an isolated digits recognition 
system was developed by K. H. Davis, R. Biddulph, and S. Balashek from Bell Labs. 
Independently in 1956, H. F. Olson and H. Belar from the RCA laboratories have developed a 
speech recognition system capable of recognizing 10 isolated monosyllabic words. 

Japanese vowel recognition was performed in 1960 by J. Suzuki and K. Nakata from the Radio 
Research Lab in Japan. The IBM Shoe-Box computer, introduced in 1962, was capable of 
performing 16 words and digits recognition. In the same year, the fi rst phoneme recognizing 
hardware was built in Kyoto University in Japan by T. Sakai and S. Doshita. In 1966, J. L. 
Flanagan and R. M. Golden have presented the phase vocoder. Although created for the 
purpose of speech coding rather than speech recognition, it supplied a great deal of insight 
into the short-time processing of speech signals. Dynamic time warping was fi rst used by T. 
K. Vintsyuk in 1968 (improved in 1971, and further in 1978, by H. Sakoe and S. Chiba). At 
that time, a 54 isolated-word speech recognition system, shown by D. G. Bobrow and D. H. 
Klatt, was the state-of-the-art. The fi rst continuous speech recognition system appeared in 
1969, developed by D. R. Reddy from Carnegie Mellon University. In 1969, B. P. Bogert, M. J. 
R. Healy, and J. W. Tukey have minted the concept of cepstrum, and introduced the cepstral 
analysis.

In 1970, F. Itakura and S. Saito presented the linear predictive coding (LPC) method for speech 
spectrum and formant estimation, leading the way to more effective speech feature extraction 
methods. The LPC feature vectors have become a very important tool in speech recognition 
and in speech signal processing in general. The speech recognition systems in 1972 were 
capable of recognizing 100 words, and by 1974, 200 words. The Itakura-distance measure 
was defi ned for LPC feature vectors in 1975 by Itakura, who was then working at Bell Labs. 
In the same year, hidden Markov models (HMMs), which were previously introduced by L. E. 
Baum in a series of statistical papers in the 1960s, were implemented in the DRAGON speech 
recognition system by J. K. Baker. This development marked the replacement of template-
based approaches to speech recognition by statistically-based methods. In 1977, 30 years after 
the appearance of the sound spectrograph, J. B. Allen and L. R. Rabiner published a unifi ed 
approach to short-time Fourier analysis and synthesis. 

Preface



VIII

In 1980, S. D. Davis and P. Mermelstein introduced the mel-frequency cepstral coeffi cients 
(MFCCs), which improved the cepstral analysis by using known characteristics of the human 
auditory system. The MFCC feature vectors constitute a major tool in speech feature extraction, 
and an alternative to the LPC feature vectors. In 1980 IBM presented the fi rst small messages 
dictating machine. Time-varying parametric modeling of speech was introduced in 1982 
by M. G. Hall, A. V. Oppenheim, and A. S. Willsky. During the 1980s, HMM has become a 
dominant approach in speech recognition, rather than implemented only by a few developers 
(such as IBM, IDA, and DRAGON). This was mainly due to the works published by Rabiner, 
including the HMM tutorial appearing in the proceedings of the IEEE, published in 1989. 

In 1990, the perceptual linear predictive (PLP) speech processing technique was introduced by H. 
Hermansky, and improved in 1994 by further introducing the relative spectral methodology 
(RASTA), to form the RASTA-PLP feature vectors. During the 1990s and the 2000s, state-of-
the-art speech recognition systems were using evolved HMM variants, human perceptual 
versions of cepstral or linear predictive coding feature vectors, and sophisticated pattern-
matching and scoring algorithms.

In the last decade, further applications of speech processing were developed, such as speaker 
recognition, human-machine interaction, non-English speech recognition, and non-native 
English speech recognition. This book addresses a few of these applications. Furthermore, 
major challenges that were typically ignored in previous speech recognition research, such 
as noise and reverberation, appear repeatedly in recent papers. The fi rst part of the book, 
applications in speech recognition, begins with a development of large vocabulary continuous 
speech recognition algorithm. It continues with several speech recognition innovations, and 
various applications in speech processing, such as speaker recognition (the relevant chapter 
also deals with reverberation challenges), and body-conducted speech recognition. The second 
part of the book, non-native and non-English speech recognition, introduces speech recognition of 
English spoken by non-native speakers, and speech recognition of non-English languages. 

I would like to sincerely thank the contributing authors, for their effort to bring their insights 
and perspectives on current open questions in speech recognition research. I would also 
like to express my deepest appreciation and gratitude to the SCIYO organization, and to the 
editorial offi ce, which gathered the authors and published this book. 

Editor

Noam R. Shabtai
Ben-Gurion University of the Negev,

Israel

In memory of Reuven Yechezkel
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Extra Large Vocabulary Continuous Speech 
Recognition Algorithm based  

on Information Retrieval 
Valeriy Pylypenko 

International Research/Training Center for Information Technologies and Systems 
Kyiv, Ukraine 

1. Introduction     
There exists a necessity for speech recognition with a huge numbers of alternatives. 
For example, during the voice control of a computer it is impossible to predict the 
subsequent word on the basis of several previous ones because it is defined by control logic, 
instead of text properties. From the other hand there is a necessity for growth of the volume 
of the dictionary to capture all possible synonyms of the same command caused by 
difficulty for users to remember the single command name variant. 
The next example concerns the text dictation. The application of such systems is limited by 
the texts, which are statistically similar to one where statistics were collected. Additional 
spoken editing of the text demands the presence of all words in the actual dictionary. 
Thus, there are applications where it is desirable to have a dictionary as large as possible, in 
future to cover all words for the given language (for some languages more than 10M words). 
The additional information to restrict the number of alternatives can be received from a 
speech signal immediately. For this purpose it is proposed to execute preliminary trial 
recognition by using the phonetic transcriber. Phonemes sequence analysis allows to build 
the queries flow. Applying the information retrieval approach considerably limits the 
number of alternatives for recognition. 

2. The baseline recognition systems 
The approach is applicable for any recognition system where phonemes and phoneme 
recognition (phonetic transcriber) are present but the number of phonemes no more than 
approximately 500 units.  
As reference systems HMM-based HTK (Young et al., 2006) and Julius (Lee, 2009) toolkits 
are used. 

3. ELVIRS Algorithm for isolated words 
3.1 Architecture 
The architecture of the system is shown in Figure 1. The features extraction and acoustic models 
blocks are reused from the baseline system. Common pattern matching unit with subset of 
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vocabulary is used on the second pass. Changes are concentrated in the new first 
recognition pass when phonetic transcriber is applied to make the sequence of phonemes. 
Then information retrieval procedure builds the sub-vocabulary for the second pass. 
 

 
Fig. 1. The architecture of ELVIRS recognition system 

3.2 Phoneme recognizer 
The phonetic transcribing algorithm (Vintsiuk, 2000; Vintsiuk, 2001) builds a phonetic 
sequence for speech signal regardless to the dictionary. For this purpose a phoneme 
generative automaton was constructed which can synthesize all possible continuous speech 
model signals for any phoneme sequence. Then the phoneme-by-phoneme recognition of 
unknown speech signal is applied. 
The same context-free phonemes as in baseline recognition system are used. 
The experimental accuracy of finding phoneme at the right place equals to approximately 
85%. 

3.3 Sub-vocabulary retrieval procedure 
Preliminary transcription dictionary is prepared to build phoneme triples. The index entry 
key is a phoneme triple, thus, the index consists of M3 entries where M is the number of 
phonemes in the system. Each index entry contains the list of transcriptions that include key 
phoneme triple. Additional memory usage is approximately 50 MB for vocabulary with 1 M 
words.   
Sub-vocabulary retrieval process is illustrated in Figure 2. Phoneme recognizer output is 
split into overlapping phoneme triples. Resulting phoneme triple becomes the query. Now, 
in this system the simple query is used where phoneme triple and query are the same. In the 
future it should be modified to take into account the insertion, deletion and substitution of 
phoneme sequence by using Levenshtein dissimilarity. Thus phonetic sequence produces the 
query flow for database.  
The query answer consists of the list of transcriptions in which the given triple is included. 
Next queries produce new transcription portions to be copied into the sub-vocabulary for 
the second pass. The counter for word repetition is supported to make the rank of word.  
All transcriptions in resulting sub-vocabulary are arranged according to the word rank 
(repetition counter). First N transcriptions are copied into a final sub-vocabulary for the 
second pass recognition. Thus the recognition sub-vocabulary consists of transcriptions of 
highest ranks but the vocabulary size does not exceed a fixed limit N. 
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Fig. 2. Sub-vocabulary retrieval process 

3.4 ELVIRS algorithm overview 
The ELVIRS algorithm (Pylypenko, 2006) works as described in the following. 
Preparation stage: 

1. Prepare the recognition vocabulary. 
2. Chose the phoneme set and build transcriptions for words from vocabulary by rules. 
3. Create database index from phoneme triple to transcriptions. 
4. Train the acoustic models from collected speech signals. 
Recognition stage: 

1. Apply phoneme recognizer for input speech signal to produce a phoneme sequence. 
2. Split the phoneme sequence into overlapping phoneme triples. 
3. Make queries from phoneme triples. 
4. Retrieve transcription lists by queries from database index. 
5. Arrange transcriptions by the rank. 
6. Chose N-best transcriptions for recognition sub-vocabulary. 
7. Recognize the input speech signal with sub-vocabulary. 

4. The information consideration 
The phoneme recognizer output can be considered as a correct phoneme sequence passed 
through a noisy channel and converted into an output sequence. Denote a right phoneme in 
output sequence as 1 and wrong one as 0. Let 1 occurs with probability u. The probability P 
to find k and more successive 1 in a binary set with length of n can be computed with the 
help of the following recurrent expression: 
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Probabilities P to find three and more successive 1 in a binary sequence for different lengths 
n and probabilities u are shown in Table 3. Average transcriptions length is equal to 
approximately 8 and the accuracy of finding phoneme at the right place for known utterance 
is equal to approximately 85%. For these values the probability to find right word in chosen 
sub-vocabulary is equal 0.953 
 

    u 
n 0.75 0.8 0.85 0.9 

6 0.738 0.819 0.890 0.948 
7 0.799 0.869 0.926 0.967 
8 0.849 0.908 0.953 0.982 
9 0.887 0.937 0.971 0.991 

10 0.915 0.956 0.981 0.995 

Table 1. Probability to find three and more successive 1 in a binary sequence with length of n 

5. ELVIRCOS algorithm for continuous speech 
5.1 Architecture 
After transcriptions list retrieval procedure an additional procedure – word graph 
composition is applied. It produces a word network for second pass recognition. 

5.2 Word graph composition 
The word graph composition procedure is illustrated in Figure 3. Word network starts from 
vertex S and ends at vertex F. Each triple from phoneme output burns intermediate vertexes 
with numbers synchronous the occurrence time. On the other hand, each triple became 
query to data base index, which returns the transcription list as result. Transcriptions are 
interlaced with intermediate numbered vertexes as base vertexes so that burning phoneme 
triples are placed in coordination.  
The rank of transcription is increased in case when intersection between same transcriptions 
burned from different phoneme triple occurs. For each moment of time (synchronous with 
phoneme sequence) the number of involved transcriptions may be calculated.  
In order to reduce the word graph complexity, the fixed limit N is applied. For each moment 
of time transcriptions with small ranks are removed from word graph so that only N 
transcriptions remain.  
The word graph is composed from left to right, that is why it is possible to construct one in 
real time with the delay is equal of largest transcription length. 

5.3 ELVIRCOS algorithm overview 
The ELVIRCOS algorithm (Pylypenko, 2007) works as follows. 
Preparation stage is the same as ELVIRS algorithm. 
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Fig. 3. Word graph composition for continuous speech 
Recognition stage: 
1. Apply phoneme recognizer to the input speech signal to produce a phoneme sequence. 
2. Split the phoneme sequence into overlapping phoneme triples. 
3. Make queries from phoneme triples. 
4. Retrieve transcription lists by queries from database index. 
5. Compose word graph network. 
6. Recognize the input speech signal with composed word net. 

6. Experimental results 
The algorithm was tested at speech corpus from 3 sources: 
1. Russian isolated and continuous speech from one speaker with duration 2 hours for 

training and 20 min for testing. 
2. Ukrainian Parliament speech from about 200 speakers with duration 50 hours for 

training and 3 hours for testing. 
3. The November 1992 ARPA Continuous Speech Recognition Wall Street Journal 

Benchmark Tests. 
For experiments, some modifications of HTK or Julius toolkit were necessary to take into 
account the algorithm. 
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The considerable reduction of the recognition time (about 10-50 times) with relatively small 
accuracy degradation (approximately 5%) in comparison with baseline systems has been 
achieved. The accuracy degradation has a good agreement with the information 
consideration. 
Recognition time not depends from vocabulary size but requires some enlarging because the 
recognition accuracy fall with vocabulary growth and needs to pay compensation by taking 
in to account more amount of hypothesis.  

7. Future extension 
The importance of information retrieval for speech recognition should be underlined. It was 
shown that additional information source from analysis of phoneme sequence allows to 
restrict the search space. These new restrictions lead to speech recognition with vocabularies 
cover practically all words for given language. 
Now some modification to adopt bigram language model is developing as a new direction 
for proposed algorithm. More complex language models can be applied in future works to 
achieve new features. 

8. References 
Lee, A., “The Julius book”, http://julius.sourceforge.jp, 2009 
Pylypenko, V. (2006). “Information Retrieval Based Algorithm for Extra Large Vocabulary 
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2007”, Antwerp, Belgium, 2007.  
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Recognition”, pp. 95–98, Kyiv, Ukraine, 2000, in Ukrainian 

Vintsiuk, T.  K. (2001) “Generative Phoneme-Threephone Model for ASR”, Proc. of the 4th 
Workshop on Text, Speech, Dialog—TSD’2001,  p. 201,  Zelezna Ruda, Czech Republic, 
2001. 

Young, S.; Kershaw, D.; Odell, J.; Ollason, D.; Valtchev, V. & Woodland, P. (2002). The HTK 
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Neuro-Inspired Speech Recognition  
Based on Reservoir Computing  

   A Ghani, T.M. McGinnity, L Maguire, L McDaid and A Belatreche 
University of Ulster 

N. Ireland, United Kingdom 

1. Introduction 
This chapter investigates the potential of recurrent spiking neurons for classification 
problems. It presents a hybrid approach based on the paradigm of Reservoir Computing. The 
practical applications based on recurrent spiking neurons are limited due to the lack of 
learning algorithms. Most of the previous work in the literature has focused on feed forward 
networks because computation in these networks is comparatively easy to analyse. The 
details of such networks have been reported in detail in (Haykin, 1999) (Pavlidis et al., 2005) 
(Bohte et al., 2000). Recently, a strategy proposed by Maass (Maass et al., 2002) and Jaeger 
(Jaeger, 2001) offers to overcome the burden of recurrent neural networks training. In this 
paradigm, instead of training the whole recurrent network only the output layer (known as 
readout neuron) is trained.  
This chapter investigates the potential of recurrent spiking neurons as the basic building 
blocks for the liquid or so called reservoir. These recurrent neural networks are termed as 
microcircuits which are viewed as basic computational units in cortical computation (Maass 
et al., 2002). These microcircuits are connected as columns which are linked with other 
neighboring columns in cortical areas. These columns read out information from each other 
and serve both as reservoir and readout. The reservoir is modeled as a dynamical system 
perturbed by the input stream where only readouts are trained to extract information from 
the reservoir. The basic motivation behind investigating recurrent neurons is their potential 
to memorise relevant events over short periods of time (Maass et al., 2002). The use of 
feedback enables recurrent networks to acquire state representation which makes them 
suitable for temporal based applications such as speech recognition. It is challenging to 
solve such problems with recurrent networks due to the burden of training. The paradigm 
of reservoir computing also referred to as liquid computing relaxes the burden of training 
because only an output layer is trained instead of training the whole network. The work 
presented in this chapter analyses the theoretical framework of Reservoir Computing and 
demonstrates results in terms of classification accuracy through the application of speech 
recognition. The design space for this paradigm is split into three domains; front end, 
reservoir, and back end. This work contributes to the identification of suitable front and 
back end processing techniques along with stable reservoir dynamics, which provides a 
reliable framework for classification related problems. 
The work presented in this chapter suggests a simple and efficient biologically plausible 
approach based on a hybrid implementation of recurrent spiking neurons and classical feed 
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forward networks for an application of isolated digit recognition. The structure of this 
chapter is as follows: section 2 elaborates the motivation, related work, theoretical review 
and description of the paradigm of reservoir computing. Section 3 contains details about the 
experimental setup and investigates front-end pre-processing techniques and reservoir 
dynamics. A baseline feed forward classifier is described in section 4 and results are 
presented. Results based on reservoir recognition are presented in section 5. Section 6 
discusses results obtained through Poisson spike encoding. A thorough discussion and 
conclusion of the chapter is provided in section 7. 

2. Computing with recurrent neurons 
The paradigm of reservoir or liquid computing is promising because it offers an alternative 
to the computational power of recurrent neural networks, however analytical study of such 
networks is not trivial (Legenstein et al., 2003) (Joshi & Maass, 2005) (Jaeger & Haas, 2004). It 
facilitates training in a recurrent neural network where a linearly non separable low 
dimensional data is projected on a high dimensional space. The readout of the reservoir can 
be trained with partial information extracted from the reservoir which suffices to solve 
complex problems such as speech recognition. In this approach, readout only observes the 
membrane potential of the spiking neurons at particular time steps which is far more 
efficient than fully quantifying the reservoir dynamics. It is due to this property that 
relatively simple readout can be trained with meaningful internal dynamics of the reservoir.  
The framework of reservoir computing is more suitable for hardware implementation 
because network connections remains fixed in the network and there is no need to 
implement weight adaptation for recurrent reservoirs. This paradigm is inherently noise 
robust therefore more suitable for digital hardware implementation on reconfigurable 
platforms such as FPGAs. FPGA implementation of recurrent spiking neurons gives the 
flexibility to develop such networks with simple real-world interface and offers other 
desirable features such as noise robustness. This paradigm appears to have great potential 
for engineering applications such as robotics, speech recognition, and wireless 
communication (Joshi & Maass, 2004) due to the computationally inexpensive training of 
readout neurons. This paradigm can also be used for channel equalization of high speed 
data streams in wireless communication as suggested by (Jaeger & Haas, 2004).  
Since the inception of the theoretical foundation by Jaeger and Maass, various groups have 
focused on investigating different aspects of the paradigm for engineering applications e.g., 
Skrownski et al., investigated the paradigm of echo state networks for speech recognition 
applications where the HFCC (Human Factor Cepstral Coefficient) technique was investigated 
for front end processing and HMM (Hidden Markov Model) classifier was used for back end 
processing. The overall performance was compared with the baseline HMM classifier. The 
main focus of the work was to investigate the noise robustness of the system based on echo 
state networks (Skowronski & Harris, 2007).Verstraeten et al., analysed the classification 
accuracy of a reservoir with different benchmarks. In their study, both sigmoidal and LIF 
(Leaky Integrate-and-Fire) based reservoirs were tested for evaluating the memory capacity 
and overall classification accuracy was calculated based on different sizes of the reservoir. The 
memory capacity was analysed by evaluating the maximum number of patterns that could be 
stored for short period of time and memory is analysed by different circuit connections in the 
reservoir. Moreover, different speech pre processing techniques were also elaborated and their 
robustness is measured against overall system performance (Verstraeten et al., 2007).  
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In previous studies, different solutions have been proposed in order to improve the 
reservoir dynamics to get better accuracies. Maass and Jaeger stated that it is possible to 
obtain a stable reservoir if topology and weights are drawn randomly (Maass et al., 2002). 
Jaeger emphasised to control the scaling of the weights while Maass emphasised that stable 
dynamics can be obtained with proper connection topologies. The objective in both cases 
was to ensure the property of fading memory or echo state in the network. It appeared from 
these studies that the paradigm does not depend on a specific connectivity of a reservoir 
rather more on a distributed, stable and redundant representation of the neurons. In a recent 
study, Ismail Uysal investigated a noise robust technique by using phase synchrony coding 
(Uysal et al., 2007). However, in all of these studies, there are no specific guidelines 
regarding implementation and stability of reservoirs and all reported techniques that 
significantly vary from each other based on the authors’ experiences of reservoir computing.  
Implementing stable reservoir is a challenging task, however the stability of the reservoir is 
not the only criteria which will guarantee a solution to the problems at hand. Two important 
factors are the proper investigation of front and back end techniques. Regardless of the size 
of the reservoir or processing nodes, it is rather difficult to solve a problem without 
investigating a robust front end technique. This work will investigate three main areas: a 
robust front end, a stable and compact reservoir, and an efficient back end engine for the 
task of recognition. The overall accuracy of the reservoir based classification technique will 
be compared with the baseline feedforward network. 

2.1 Theoretical background 
In contrast to feedforward networks, where inputs are propagated to the output layer in a 
feedforward manner, feedback loops are built into the design of recurrent networks in order 
to incorporate dynamical properties. One of the simple and well known architecture was 
introduced by John J Hopfield (Hopfield, 1982) and Elman in 1990 (Elman, 1990). Other 
modified architectures based on recurrent neural networks (RNN) have been proposed by 
Jordan (Jordan, 1996) and Bengio (Bengio, 1996) (see Fig. 2).  The Hopfield networks consists 
of a set of neurons and corresponding unit delays with no hidden units as illustrated in Fig. 
1. In this network, the total numbers of feedback loops are equal to the total number of 
neurons where the output of each neuron is fed back to each of the other neurons in the 
network with no self feedback loop (Haykin, 1999). Hopfield neural networks are promising 
but they require large number of neurons compared to the number of classes and take 
considerably more time to compute compared to feedforward networks (Looney, 1997). 
Elman network commonly is a two layer network where output from the first layer is fed 
back to the input of the same layer. A short term memory can be implemented by including 
delay in the connection which stores values from the previous time step that can be used in 
the current time step. Because of this short term memory capability, Elman networks can be 
trained to respond to the spatio-temporal patterns. Jordan type artificial neural networks are 
recurrent networks with delayed loopback connections between a context output and input 
layer. The context layer allows the network to produce different values with the same input 
based on the history. In Bengio networks, the network response is fed back to the input 
through a context layer and a delayed output from the previous time steps.  
Recurrent neural networks have also been investigated by other researchers such as (Doya, 
1995) (Atiya, 2000) and (Pearlmutter, 1995). Recurrent neural networks can be represented as 
a Mealy state machine which receives inputs and produces outputs that are dependent both 
on its internal state and the input (see Fig. 3). 
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Fig. 1. This figure shows Hopfield network model which consists of a set of neurons and 
corresponding set of unit delays. This makes this model a recurrent multiple loop feedback 
system.  
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Hidden (t-1)

Jordan Bengio
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Fig. 2. Recurrent neural networks 
A major advantage of recurrent neural networks such as Elman, Bengio, and Jordan is their 
capability to store information for a short period of time. In feedforward networks, memory 
can be augmented with tapped delay lines while recurrent networks are provided with 
build-in memory by recurrent loops (Haykin, 1999). There is no straight forward way to 
construct a recurrent neural network which will work as a finite state machine, therefore 
RNNs have to be trained to simulate a specific problem. There has been limited success in 
this regard and there is no standard algorithm for training RNNs (Jaeger, 2001). There have 
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Finite memory

U(t) Y(t)
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X(t)

 
Fig. 3. Mealy type finite state machine where output Y(t) is dependent on the input U(t), 
internal state, X(t) and the function fM. 

been some attempts to develop learning algorithms for recurrent networks but they are 
computationally much more expensive and non-trivial to converge (Haykin, 1991) (Jaeger, 
2002) (Williams & Zipser, 1989) (Singhal & Wu, 1989) (Atiya et al., 2000). Some of these 
algorithms are based on approximating the gradient, others are based on approaches such as 
extended Kalman filter, EM (expectation-maxmisation) based algorithms and novel 
architectures such as focused backpropagation and the approximated Levenberg-Marquardt 
algorithm. A detailed discussion about training of recurrent neural networks is provided by 
(Atiya et al., 2000). There has been significant research in the temporal phenomena at the 
synapse level (Abbott & Nelson, 2000) but less emphasis on the learning dynamics at the 
network level (Jaeger, 2001).         
Recently, in order to overcome the burden of training in recurrent networks, the paradigm 
of liquid computing was introduced by Maass and Jaeger. This paradigm covers three main 
techniques in classification related problems: Echo State Machine (Jaeger, 2001), 
Backpropagation Decorrelation (Steil, 2004), and Liquid State Machine (Maass et al., 2002). 
The fundamental motivation behind all these techniques is to overcome the computational 
burden of the recurrent neural network training. In the paradigm of liquid computing, the 
partial response of a recurrent reservoir is observed from outside by any suitable 
classification algorithm such as back propagation. It is much easier and more 
computationally efficient to train the output layer (feedforward network) or so called 
‘readout’ neurons, instead of the complete network of recurrent neurons. An abstract 
overview of the Liquid State Machine is shown in Fig. 4. 
The mathematical theory of liquid computing is based on the observation that if a complex 
recurrent neural circuit is excited by an input stream u(t) and after some time s, such that 
when t > s a liquid state x (t) is captured, then it is very likely that this state will contain 
most of the information about recent inputs. According to the theory, it is not possible to 
understand the neural code but it is not important because liquid by itself serves as short 
term memory and the major task of learning depends on the state vector x(t) which is 
exclusively used by the readout neurons. The liquid reservoir transforms the input stream 
u(t) to a high dimensional spatial state x(t) (Maass et al., 2002). The paradigm is shown in 
Fig. 5. 
The liquid state machine (LSM) is somewhat similar to the finite state machine (FSM) but the 
major difference is that LSM is viewed as a state machine with no limited states in contrast 
to the FSM where all transitions are custom designed and pre determined. According to the 
theory, if the reservoir state x(t) is high dimensional and if its dynamics are sufficiently 
complex then many concrete finite state machines are embedded in it. Mathematically, a 
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u(t)

LM

x M (t)

f M

y(t)

Liquid states

Readout 

Liquid  
Fig. 4. An abstract overview of a liquid state machine where an input stream u(t) is mapped 
to a target function y(t).  An input is injected to the liquid filter LM and state vector xM(t) is 
captured at each time step t. The state vector is applied to the readout neurons through 
mapping fM in order to approximate the target function y(t) (figure annotated from Maass et 
al., 2002). 
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Fig. 5. An abstract overview of a neural reservoir which shows an input U(t) is fed into the 
spiking recurrent reservoir where different states are captured in the block ‘liquid state’ 
which are used as training vectors for readout neurons.  

liquid state machine M consists of a filter LM that maps input stream u(t) onto reservoir state 
x(t), where x(t) not only depends on u(t) but also on previous input u(s) (Maass et al., 2002). 
Mathematically this can be written as: 

 x(t) = (LM u)(t)  (1) 

While a readout function fM maps the state of the liquid x(t) into a target output y(t).  

 y(t) = fM (xM(t))  (2) 

The advantage of the neural reservoir is that it does not require a task specific connectivity and 
it does not require any specific code by which information is represented in the neural 
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reservoir because only the readout neurons are trained (Maass et al., 2002). Theoretical results 
imply that this is a universal state machine which has no limitation on the power of neural 
microcircuit as long as the reservoir and readouts fulfill the separation and approximation 
properties.  In order to construct a neural microcircuit, the following three steps are required: 
The structure of a neural reservoir is defined in terms of processing node types (LIF, HH or 
Izhikevich), total number of recurrent neurons, their connectivity and parameters. Whereas, 
the state vector x(t) of the neural reservoir is recorded at different time steps for different 
inputs u(t). A supervised learning algorithm is applied to train a readout function f such that 
an actual output f(x(t)) is as close as possible to the target value y(t). The simulation 
experiments performed by Jaeger and Maass showed that a simple readout would be 
sufficient to extract information from the recurrent neural reservoir. The major difference 
between ESN and LSM are the node types where sigmoid neurons are used for ESN and LIF 
neurons for LSM. The results are demonstrated with classification problems as reported in 
(Jaeger, 2001) (Maass et al., 2002) (Maass et al., 2004b). Maass et al., examined the recurrent 
LIF neurons in a bench-mark task proposed by (Hopfield & Brody, 2001) (Hopfield & Brody, 
2000). The robustness of a neural reservoir is justified by Cover’s separability theorem, 
which states that if a pattern classification problem is projected non-linearly on a high 
dimensional space, it is more likely to be linearly separable in comparison to the low 
dimensional space (Cover, 1965) (Skrownski et al., 2007). 
It was stated by Maass and Jaeger that temporal integration can be achieved by randomly 
created recurrent neural reservoirs and various readouts can be trained with the same 
reservoir. A classification can be guaranteed by this paradigm if the dynamics of a reservoir 
exhibit a property of fading memory or echo state property. The concept of echo state property 
or fading memory is introduced because different states disappear over time. Theoretically, 
this paradigm appears to have no limits on the power of the neural microcircuit but there 
are no specific guidelines as how to construct a stable or ordered recurrent neural reservoir, 
an appropriate front end and classification algorithm for backend readout. In the following 
section, an experimental framework is proposed inspired by the paradigm of reservoir 
computing where the design space is split into three main areas: front end, back end and 
reservoir. Each one of these areas were analysed individually and then integrated for their 
performance evaluation (Ghani et al., 2006) (Ghani et al., 2008).  

3. Experimental setup 
The task of isolated spoken digit recognition is significantly complex and different 
techniques for solving this problem have been reported in the literature (Sivakumar et al., 
2000) (Zhao, 1991) (Kim et al., 1999). In this section, a biologically plausible hybrid engine is 
proposed inspired by the framework of reservoir computing to solve isolated digit 
recognition. A rather simple feed forward multilayer perceptron is proposed and used as 
readout for classification of 10 isolated spoken digits from the TI46 speech corpus 
(Doddington & Schalk, 1981). The readout neurons were trained with standard back 
propagation algorithms and with only partial information extracted from recurrent reservoir 
being used in the training. It is computationally expensive to process all the states recorded 
from the recurrent reservoir and therefore inefficient for backend classification. In this 
experiment, only five states were recorded sampled at every 25 ms from start to the end of a 
1 second simulation of the reservoir. A detailed design flow of the reservoir classification 
engine is shown in Fig. 6. 
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Fig. 6. This figure shows different steps involved in the investigation of the speech 
recognition application with a recurrent neural reservoir. The input speech samples are pre- 
processed and noise is removed by an end-point detection technique. Features are extracted 
and processed as inputs for the neural reservoir. In order to reduce the computational 
burden of readout, only partial information is extracted and simple feedforward neural 
network is used for classification. 

In the following sections, the approach is investigated and analysed in three stages: feature 
extraction through linear predictive coding, investigation of stable neural reservoir 
dynamics and back end processing through simple gradient based learning. The experiment 
is based on the subset of isolated digit recognition (digits 0-9) dataset from the TI46 speech 
corpus. The dataset provides samples spoken by five different speakers with each digit 
being uttered four times by each speaker. This provides a total dataset of 200 speech 
samples (10 digits x 5 speakers x 4 utterances). 
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3.1 Pre-processing  
In the application of speech recognition, it is very important to detect the signal in the 
presence of background noise in order to improve the accuracy of a system. A speech signal 
can be divided into three states: silence, unvoiced and voice (Luh et al., 2004). It is very 
important to remove the silence state in order to save the overall processing time and hence 
to improve the accuracy. In order to detect the silence part, an end-point detection technique 
is used where signal energy is calculated and a threshold value is determined. The total 
amount of data processing is minimised by accurately detecting the start and stop points in 
a sample speech signal (see Fig. 7). As shown in the figure, a spoken word ‘five’ is sampled 
at 12 KHz for 8260 samples or a duration of 0.69 seconds. Total silence time before and after 
voice is around 0.37 seconds or 4453 samples. By reducing this silence time, the overall 
signal pre processing time can be improved to 53%.   
 

c1

c7

c1

c7

c1

c7

c1

c7

 
Fig. 7. This figure shows a raw speech signal sampled at 12 KHz for 8260 samples. The 
utterance can be divided in three clearly differentiable parts: silence, speech and then 
silence. The waveform has quite a significant part of silence in the beginning and the end of 
a signal. End-point detection technique removes the silence part from raw speech signal and 
only voiced portion of the signal as shown in the bottom plot is processed. By using an end 
point detection technique, overall processing time can be improved to 53%. 

3.2 Feature extraction 
Once the noise is filtered out from the speech signal, an appropriate speech coding 
technique is applied for feature selection. Different biologically plausible and signal 
processing based techniques such as frequential based MFCC (Mel Frequency Cepstral 
Coefficient), Lyon Passive Ear and Inner Hair Cell models have been reported in the 
literature and a detailed comparison is provided by (Verstraeten et al., 2005). These 
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techniques provide a good analysis but none of them offers an optimal solution. In this 
experiment, a temporal based LPC (Linear Predictive Coding) technique is applied which is 
one of the most useful methods for encoding a speech signal. In this method, present 
samples of the speech are predicted by the past p speech samples. Mathematically, this can 
be written as: 

 1 2( ) ( 1) ( 2) ... ( )px n a x n a x n a x n p= − + − + + −   (3) 

Where ( )x n  is the predicted signal value, x(n- p) the previous observed value and ap the 
predictor coefficient. The coefficients, a1, ….ap remain constant while the objective is to 
estimate the next sample by linearly combining the most recent samples. Another important 
consideration is to minimise the mean square error between the actual sample and the 
estimated one. The error generated by this estimate can be calculated as: 

 ( ) ( ) ( )e n x n x n= −   (4) 

Where e(n) is the calculated error and x(n) is the true signal value. 
Speech is sampled at the rate of 12 KHz and noise is removed by the end-point detection 
technique. The frame size is chosen as 30 ms and a frame rate 20 ms. Autocorrelation 
coefficients were computed from the windowed frame and Hamming window is used to 
minimise the signal discontinuities at the beginning and end of the frame. An efficient 
Levinson-Durbin’s algorithm is used to estimate the coefficients from a given speech signal. 
It is computationally expensive and not feasible to process all frames in the signal. It also 
leads to few problems because due to the various signal lengths the total numbers of frames 
are different. For this experiment, total four frames were selected for each spoken digit in 
linear distance from the start and end point of the signal, 7 coefficients per time frame over 
four frames and hence total 28 features per sample were processed. These feature vectors 
were found to be a good compromise between computational complexity and robustness 
(Shiraki & Honda, 1988). These frames were used for training and testing the baseline feed 
forward classifier. For reservoir based approach, same coefficients were used as inputs, 
further details are reported in the following section. 

3.3 Reservoir dynamics  
In order to model a stable reservoir, it is very important that it should have two qualities: 
separation and approximation (Maass et al., 2002). The approximation property refers to the 
capability of a readout function to classify the state vectors sampled from the reservoir. The 
separation property refers to the ability to separate two different input sequences from each 
other. This is important, because the readout network needs to be able to distinguish 
between two different input patterns to have a good classification accuracy. If the output 
responses of a reservoir for two different inputs are the same then the readout network will 
not be able to differentiate between the two patterns and thus will not be able to classify 
which pattern belongs to a particular class.  
In this study, reservoirs are generated in a stochastic manner where a 3D column is 
constructed (see Fig. 8a) which is a biologically plausible way to imitate microcolumnar 
structures in a neocortex (Maass et al., 2002), other configurations are also possible as shown 
in Fig. 8 b, 9a and 9b. There have been other strategies proposed in the literature for their 
satisfactory performance based on empirical data (Legenstein & Maass, 2005) (Skowronski & 
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                                            (a)          (b) 

Fig. 8. (a) A 5x5x5 3D grid constructed with a single input neuron  
(b) Three microcolumns of size (3x2x6) (3x1x6) and (3x2x6) with three input neurons. 
 

 
   (a)     (b) 

Fig. 9. (a) A 5x1x5 cortical column fully connected with a single input neuron  
(b)  A 3x3x6 grid with three input neurons 

Harris, 2007) (Jaeger, 2002) (Verstraeten et al., 2007) (Uysal et al., 2007). The design space for 
constructing a stable reservoir is huge and depends on various important factors such as 
node type, probability of local and global connections and the size of the reservoir. Apart 
from the reservoir intrinsic dynamics, there are other factors which contribute to the overall 
performance of a reservoir such as input features which are used to perturb the reservoir. It 
is very important that a reliable front end is investigated so that the reservoir can effectively 
separate different input streams. Once a stable reservoir is constructed then different 
snapshots are recorded from the reservoir at different time steps and processed for 
approximating a readout function (Legenstein & Maass, 2005). If two reservoir states 
xu(t)=(Ru)(t) and xv(t)=(Rv)(t) for two different histories x(.) and v(.) are different then the 
reservoir dynamics are stable, otherwise they will be considered as chaotic. This property is 
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desirable from practical point of view because different input signals separated by the 
reservoir can more easily be classified by the readout neurons.  
Additionally, the key factor behind a stable reservoir is its short term memory capability 
which depends on a number of parameters such as membrane threshold, reset voltage and 
leaky integration. The advantage of bigger reservoirs is that they increase the dimensionality 
of the reservoir states and data becomes more visible to the readout neurons. One of the 
criteria in evaluating the computational capability of a recurrent reservoir is to analyse its 
separation property. It was observed from experimentation that a task which is solved by a 
large reservoir can also be solved by a much smaller recurrent reservoir provided that the 
network is capable of differentiating between two different input streams. It is important to 
observe the reservoir states xu(t) = (Ru) (t) and xv(t) = (Rv)(t) for two different input histories 
u(t) and v(t). In order to fulfill the separation property, two different histories have to be 
captured by the reservoir to prove that the reservoir dynamics are not chaotic. This is also 
important for a readout function to distinguish between two different inputs in order to 
approximate the output function. It is demonstrated in this experiment that simple readout 
neurons such as an MLP could classify different input streams if properly separated by the 
reservoir. A major advantage of this approach is the improved classification accuracy with a 
few neurons which overcomes the burden of bigger reservoirs.  
The reservoir is constructed as a three dimensional grid (see Fig. 8a) and the probability of 
connecting two neurons with each other is determined by calculating the Euclidean distance 
D between the nodes i and j: 

 ( , , )x y zi i i i=  and ( , , )x y zj j j j=   (5) 

Where distance between nodes i and j is calculated as: 

 2 2 2( , ) ( ) ( ) ( )x x y y z zD i j i j i j i j= − + − + −   (6) 

In equation 5, i and j are input neurons with three coordinates, x, y and z. The probability to 
connect two neurons i and j is calculated by using the following equation: 

 ( , )
( , ).conn i j

D i jP C e
λ=

−   (7) 

In equation 7, λ is used to control the average amount of connections between neurons. 
Depending on whether neurons i and j were excitatory or inhibitory, the value of C was 
used as suggested by (Maass et al., 2002). This is an important factor in controlling the 
reservoir dynamics. Different reservoirs were investigated in order to analyse their short 
term memory and results are reported. In Fig. 10, an architecture of a cortical column is 
shown where an input stimulus is fully connected to the reservoir of 27 spiking neurons and 
states were recorded. The reservoir states x(t) refer to the states of all the neurons in the 
reservoir in terms of membrane voltages and spike firing times at particular time steps (t, 
t+1…t+n), further details regarding reservoir states are provided in section 5.  
As shown in Fig. 11, most of the neurons in the reservoir are active which shows an ordered 
activity in response to the input stimulus. These reservoir states can be used as short-term 
memory for readout neurons. The membrane time constant is set to 30 ms, absolute 
refractory period to 3 ms and threshold voltage to 15 mV. The reservoir neurons i, j and 
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Fig. 10. This figure shows a reservoir of 27 (3x3x3) LIF neurons fully connected with an 
input neuron. Some neurons are marked with magenta balls which denote inhibitory 
neurons while others are excitatory neurons. 

 
Fig. 11. This figure shows a response of an input square wave in terms of membrane 
voltages. The top plot shows an input stimulus and bottom plot shows the membrane 
voltages. The vertical axes show the neurons’ membrane potential and the horizontal axis 
shows the simulation time. 
their synaptic connectivity is defined by equation 7 where average amount of connections 
were controlled by parameter λ. The λ value of 2 is used in these simulations. The 
parameters selection is based on the biological data obtained from Henry Markram’s Lab in 
Lausanne (Gupta et al., 2003). The data is obtained through experiments on rat 
somatosensory cortex and suggested by Maass (Maass et al., 2002).  
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In the paradigm of reservoir computing, readout neurons have an exclusive access to the 
liquid or reservoir states x(t). For stable reservoir dynamics, it is required that two different 
inputs u(s) and v(s) should produce two significantly different states xu(t) and xv(t) which 
will hold information about preceding inputs. If the reservoir dynamics are stable (ordered) 
then a simple memory-less readout can produce the desired output (Natschlaeger et al., 
2002). In order to analyse the separation property of reservoirs, various reservoir 
architectures were simulated and their responses were observed in terms of membrane 
voltages and spike times. In these simulations, 3D columns were used with different 
reservoir sizes. A standard leaky integrate and fire model was simulated where the 
membrane potential of a neuron was calculated as follows: 

 ( ) .( ( ) )m
m m resting m syn noise

dV V V R I t I
dt

τ = − − + +   (8) 

Where τm is the membrane time constant, Vm the membrane voltage, Vresting is the membrane 
resting potential which is 0 V, Isyn(t) is the synaptic input current, Inoise is a Gaussian random 
noise with zero mean and a given variance. The membrane potential is set to the value of 
Vinit (0.013 V). If the membrane voltage Vm exceeds a certain threshold Vth (0.015 V) it is reset 
to the Vreset which is similar to the value of Vinit .  
In order to observe more realistic responses of the reservoir, the features extracted through 
LPC technique were fed into the reservoir and the reservoir states were recorded. The inputs 
can be fed into the reservoir in two different ways: analog currents and spike trains. In these 
simulations analog currents were used as inputs. In section 7, the input values were encoded 
in spike trains and results were analysed. In Fig. 12, the reservoir architecture is shown with 
a column of 8 neurons fully connected with an input neuron. The membrane voltages and 
spike times in response to input digits 1 and 7 in Fig. 13 and 15. For these simulations, the 
membrane threshold voltages were set to 15 mV and reset voltages to 13.5 mV. An ordered 
activity is observed in all these responses. It can be seen from these simulations that most of 
the neuron’s membrane voltages and spike firing times were in order which shows a stable 
reservoir dynamics.  

 
Fig. 12. This figure shows a column of 8 neurons (2x2x2) fully connected with an input 
neuron. The input to this reservoir is digit 0. 
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Fig. 13. This figure shows an input digit one and its response in terms of membrane voltage 
and spike times. The simulation is run for 1 second and spikes were recorded when 
membrane potential exceeded a threshold value of 15 mV. The reset voltage was set to 13.5 
mV. The weights were randomly drawn between -0.1 and 0.1. Total 200 states were recorded 
by setting the recorder’s time step of 5 ms. The middle plot shows the membrane potential 
and bottom plot shows the spike times. The membrane activity is shown in comparison with 
the spike firing times. 

 
Fig. 14. This figure shows the internal dynamics of a reservoir in response to digit 7. 
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Fig. 15. This figure shows an architecture of 27 (3x3x3) recurrent LIF neurons fully 
connected with two input neurons.  

In these simulations the reservoir architecture and the number of neurons were remained 
fixed and internal states were analysed in response to different input stimuli. It is important  
to observe that reservoir internal states correspond to the input stimulus and could separate 
two different inputs. This is an important property which has to be verified for successful 
classification because readout neurons will have an exclusive access to the membrane 
voltages of the neurons in the reservoir, if the reservoir states were not significantly different 
from each other then the readout neurons will not be able to classify different inputs.   
In order to analyse the robustness of a reservoir, two inputs were simultaneously applied to 
the fully connected reservoir and states were recorded. The state differences were analysed 
as shown in Fig. 18 and 19. Fig. 17 shows the architecture used for these simulations with 27 
LIF neurons fully connected with two input neurons. The inputs to the reservoir are two 
sine waves with different frequencies.  
 

 
Fig. 16. This figure shows spike times in the bottom plot in response to two different inputs 
(top plot). The vertical blue lines show the neurons firing times in response to input 2 which 
is clearly separable from input 1.  
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Fig. 17. This figure shows the membrane voltages and spike times in response to two 
different inputs. The reservoir activity is in order with regard to the input stimuli where 
both spike times and membrane voltages are separable.   

 
Fig. 18. This figure shows an architecture of 8 neurons (2x2x2) partially connected with an 
input neuron. 
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Fig. 19. This figure shows a reservoir response in terms of membrane voltages and spike 
times. Due to the limited connectivity, only one neuron triggered to fire. 

Information processing in cortical neurons crucially depends on their local circuit connectivity. 
Many efforts have been made to investigate the neuronal wiring of cortical neurons and is still 
an active area of research (Braitenberg & Schuz, 1998) (Holmgren et al., 2003) (Gupta et al., 2000) 
(Foldy et al., 2005) (Yoshimura et al., 2005). The overall state of a reservoir very much depends on 
the connectivity of input neurons with the reservoir. For partially connected inputs, it is less 
likely that most of the neurons in the reservoir will have short term memory, however, for 
fully connected inputs, the probability of neurons having the short term memory increases 
many folds. A series of experiments carried out with different input connectivity and results 
are reported. In Fig. 18, an architecture is shown with a reservoir size of 8 neurons where input 
is connected with the reservoir with just one connection. The stimulus to the reservoir is digit 0 
and states were recorded in terms of membrane voltages and spike times. An extremely low 
activity is observed as shown in Fig. 19, however, the short term memory of a reservoir 
increases with increased input connectivity as shown in Figs. 21 and 23. The reservoir 
architectures are shown in Figs. 20 and 22. 
Input connectivity is an important design decision and affects the overall accuracy of the 
classifier because reservoir states will be used as training vectors for readout neurons. If the 
reservoir states were not properly recorded then regardless of the size of the reservoir, the 
readouts will not be able to classify.   
This section investigated different reservoir topologies and dynamics with the help of 
routines from the CSIM toolbox (Natschlaeger et al., 2002). In section 4, state vectors 
recorded from the reservoir will be used for training the neural classifier (backend) in order 
to check the accuracy and robustness of the classifier. The rationale behind this investigation 
was to analyse the reservoir dynamics which is crucial for readout neurons. It is far from 
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Fig. 20. This figure shows an improved connectivity where input neuron is connected with 
reservoir with two connections. 
 

 
Fig. 21. This figure shows a response of reservoir with an improved neuron activity. 
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Fig. 22. This figure shows a fully connected network where input neuron is fully connected 
with all the neurons in the reservoir. 

 

 
 

Fig. 23. This figure shows that almost all the neurons are active in the reservoir and the 
reservoir dynamics are ordered and correspond to the input stimulus. 
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trivial to model a stable reservoir and very much depends on the experience with this 
paradigm. The parameters selected for these simulations were empirical, however, once a 
stable reservoir is modelled, it can successfully be used for different input stimuli and the 
memory capacity (maximum number of patterns that could be stored for a short period of 
time) can easily be improved by increasing the size of the reservoir without any significant 
degradation. In the following section, a baseline feed forward MLP classifier is implemented 
and features extracted from speech front end are used for training and testing. 
The neocortex constitutes almost 80% of the brain and appears to be the fundamental unit of 
information processing in mammals. The neural microcircuit plays an important role in 
functions such as adaptability, memory and higher cognitive functions (Natschlager et al., 
2003). This study emphasises the importance of connectivity and compact stable reservoirs for 
microcircuit design. The most interesting characteristic of the neocortical microcircuit is their 
outstanding computational power where temporal aspect is not necessary for the training of 
readout neurons because temporal processing is done only at the reservoir level. The biggest 
advantage of neural microcircuit is that it doesn’t require any task specific connectivity, rather 
the same circuit can be used for different computational tasks and only readouts are required 
to be trained to produce desired outputs. It is theoretically analysed and predicted by Mass 
(Maass et al., 2002) that there are no limitations to the power of this model and it can be used 
as a universal computational model, however, one needs to investigate a reservoir which will 
work as a fading memory and fulfill the separation property.  

4. MLP baseline classifier  
The paradigm of reservoir computing very much depends on suitable techniques for front 
and back end processing. In the previous experiments, front end and reservoir dynamics 
were investigated; this section investigates a feed forward MLP classifier for backend 
processing. In order to evaluate classification accuracy, different network sizes and standard 
backpropagation learning algorithms (backpropagation, resilient backpropagation and 
Levenberg-Marquardt) were evaluated.   
In order to pre-process input data, four frames were selected to extract coefficients from an 
input speech signal with 7 coefficients per frame and 28 features per sample. The features 
were extracted through an LPC technique as stated earlier. The pre processing is done in 
order to remove the noise from a signal and then coefficients were extracted at the frame 
rate of 20 ms and analysis is done by windowing the speech data with a window size of 30 
ms. The noise removal is performed with a threshold technique where threshold is 
compared with the standard deviation of the signal power.  
For this experiment, the total dataset consisted of 200 samples, divided into two sets 
(training and testing), 20 samples (5 speakers x 4 utterances) for each digit with 28 LPC 
features per sample. In order to analyse the classification accuracy, different training sets 
and hidden layer neurons were investigated. The results in terms of classification accuracy 
are shown in Tabs. 1 and 2. In a series of experiments, the best results obtained in those trials 
are shown in the following tables. For performance evaluation, the Matlab gradient descent 
with adaptation (traingda) training algorithm was used where learning rate was adjusted to 
the value of 0.1 and the goal was set to 0.01. 
It is observed from these experiments that by increasing the number of training samples and 
hidden neurons the overall accuracy improves except the decrease in performance when 
numbers of hidden neurons were increased from 20 to 25 in Table 1 and from 25 to 30 in 
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Hidden 
neurons 

Digit 1 
(%) 

Digit 2 
(%) 

Digit 3 
(%) 

Digit 4 
(%) 

Digit 5 
(%) 

Digit 6 
(%) 

Digit 7 
(%) 

Digit 8 
(%) 

Digit 9 
(%) 

Digit 0 
(%) 

Mean 
(%) 

10 100 60 60 60 40 40 20 0 40 80 50 
20 100 40 80 60 80 60 20 20 60 100 62 
25 80 60 60 60 80 40 20 20 60 60 54 
30 100 60 60 60 80 60 40 20 40 100 62 
35 80 60 80 80 100 80 0 40 80 80 68 

Table 1. Total samples = 150, training samples = 100, test samples = 50 
 

Hidden 
neurons 

Digit 1 
(%) 

Digit 2
(%) 

Digit 3 
(%) 

Digit 4 
(%) 

Digit 5 
(%) 

Digit 6 
(%) 

Digit 7 
(%) 

Digit 8 
(%) 

Digit 9 
(%) 

Digit 0 
(%) 

Mean 
(%) 

6 80 20 100 100 60 60 20 20 80 100 58 
20 80 40 100 40 60 80 20 20 80 100 62 
25 100 40 100 80 80 80 40 20 80 100 72 
30 100 40 100 80 80 80 20 20 80 80 68 
30 100 40 100 80 100 80 20 60 80 100 76 
35 100 40 100 80 80 80 40 20 80 100 72 

Table 2. Total samples = 200, training samples = 150, test samples = 50 
Table 2, however the maximum performance obtained was limited to 76%. By increasing the 
hidden neurons more than 35 the overall performance starts decreasing. The investigation of 
feed forward network was motivated due to two reasons: first to evaluate the performance 
of feed forward networks as a standalone classifier, and second to observe the bottlenecks 
because the same classifier will be used as readout for the reservoir where features extracted 
from the reservoir will be used as training sets.  

5. Reservoir based recognition  
The previous sections investigated the front end (speech pre processing), backend (feed 
forward network) and neural reservoir dynamics. This section will investigate the 
realization of the complete paradigm of reservoir computing by integrating the overall 
components investigated in previous sections (see Fig. 24). The paradigm operates by 
feeding input features extracted through LPC technique into the recurrent neural reservoir 
as the post synaptic currents. The reservoir is constructed from a random recurrent spiking 
neural network which projects linearly non separable low dimensional inputs to a high 
dimensional space. The recurrent neural network by itself is not trained, rather, different 
reservoir states sampled every 25 ms were recorded for backend classification by the MLP (see 
Fig. 25). Theoretically, there is no limit to the computing power of this paradigm if the 
reservoir dynamics are stable and fulfill the requirements of short term memory and state 
separation. If the reservoir dynamics are carefully analysed then a simple gradient based 
algorithm can successfully classify a complex problem such as speech recognition. In this 
experiment, standard supervised algorithms were investigated to quantify their classification 
accuracies based on the input features sampled through the reservoir. In order to analyse the 
separation property, different reservoir sizes were chosen and classification accuracies were 
calculated. The LIF neurons were used for reservoir construction. Both static and dynamic 
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Fig. 24. This figure shows a proposed reservoir based speech recognition approach where 
input speech signals are pre processed and data was fed into the recurrent neural reservoir. 
The learning is performed by the feed forward readout neurons. 
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synapses were used amongst which 20% were chosen to be inhibitory as suggested by (Maass 
et al., 2002) based on the data from Henry Markram’s Lab in Lausanne (Markram, Lausanne). 
Once the reservoir is perturbed with the input stimuli, the state vectors were recorded from 
the reservoir sampled at 25 ms and used for training the feed forward MLP classifier with a 
single hidden layer and 10 output neurons. The recorder time was set to 5 ms and for 1 second 
simulation of a reservoir total 200 states were recorded. This state vector contained the 
membrane voltages of all the neurons in the reservoir at each recording time step. It is neither 
required nor feasible to process all these states for backend classification, therefore these states 
were sampled at 25 ms in linear scale from start to the end of simulations and used as training 
vectors for the classifier. In all these experiments, only the readout neurons were trained 
whereas the reservoir connectivity remained fixed for generating the reservoir states. The 
performance of backend feedforward classifier was evaluated with test samples and the best 
results obtained in different trials are shown in Table 3, 4 and 5.  
In Table 3, a reservoir size of 8 neurons successfully classified the input data and the results 
shown in Tables 4 and 5 also correspond to the theoretical framework of reservoir 
computing. It is evident from these experiments that for better classification accuracies, 
stable reservoirs are more important than merely the size of the reservoir. These results also 
justify the Cover’s separability theorem (Cover, 1965). Using backpropagation algorithms 
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Fig. 25. Processing all frames in the reservoir are computationally expensive therefore 
specific frames are selected in linear distance with reference to the start point and the end 
point of the simulations. Each frame consists of the total number of neurons in the reservoir 
sampled at the rate of 25 ms.  
 

Readout Reservoir size Network structure Test accuracy 
(%) 

Matlab RP 8 32-20-10 94.8 
Matlab LM 8 32-30-10 100 
Matlab BP 8 32-50-10 96 

Table 3. Test performance with reservoir size = 8  
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Readout Reservoir size Network structure Test accuracy 
(%) 

Matlab RP 15 60-20-10 80.4 
Matlab LM 15 60-30-10 98.8 
Matlab BP 15 60-50-10 92.8 

Table 4. Test performance with reservoir size = 15  
 

Readout Reservoir size Network structure Test accuracy 
(%) 

Matlab RP 27 108-20-10 100 
Matlab LM 27 108-30-10 96 
Matlab BP 27 108-50-10 100 

Table 5. Test performance with reservoir size = 27  
for readout neurons are advantageous because they can approximate complicated target 
functions if appropriate network architectures were selected. In this study, different 
architectures were investigated with different hidden layers and number of neurons and 
results are reported. A thorough discussion about these algorithms is out of the scope of this 
chapter, reader is refer to (Hertz et al., 1991) (Duda et al., 2001) for further details. There is 
no specific learning algorithm which will guarantee a good accuracy of the readout neurons. 
A logical approach is to start with standard backpropagation algorithms and test the 
accuracy with different hidden layers and number of neurons. The good classification 
accuracy will not only infer to the suitable architecture of a feed forward neural network but 
will also show that the reservoir has significantly separated different inputs and have 
projected data sufficiently on a high dimensional space. These series of experiments have 
thoroughly investigated the theoretical framework of reservoir computing and results are 
demonstrated with an speech recognition application. In order to quantify results, a baseline 
feedforward classifier is implemented and results are compared with the reservoir based 
technique. This section has investigated the framework with analog inputs extracted 
through speech front end, in the following section, an experiment is carried out where input 
stimuli is converted into Poisson spike trains and results were analysed.  

6. Spike based coding  
Biologically plausible neurons communicate through spike trains, this section will investigate 
the framework by encoding the analog input values into spike trains and results are reported. 
As stated by Squire and Kosslyn that the timing of successive action potentials is irregular in 
the cortex (Squire & Kosslyn, 1998), therefore Poisson spike coding technique is used where 
the generation of each spike was dependent only on an underlying analog driving signal and 
each spike was considered to be independent of all the other spikes (Heeger, 2000).  
In order to generate a spike train, an interspike interval is randomly drawn from an 
exponential distribution and each successive spiketime is calculated by the previous 
spiketime plus a randomly drawn interspike interval. In order to convert input features into 
Poisson spike trains, first negative analog values are converted into positive values and 
spike times were calculated (see Fig. 26). The spike times were sampled at 100 ms for 
maximum time in order to generate spike trains (see Fig. 27). 
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The spiketimes calculated through Poisson encoding were fed into the reservoir and states 
were recorded. The total numbers of recorded states were kept the same for fair comparison 
with analog inputs as stated in section 5. The results are shown in Table 6, 7 and 8. The 
reservoir is tested with the size of 8 and 15 neurons and the overall accuracy didn’t improve 
by increasing the size of reservoir. The best accuracy achieved with Poisson encoding was 
limited to 98%. 
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Fig. 26. Spike times with Poisson encoding for digit1, 2, 4, 6, 7, and 9 
 

 
Fig. 27. Spike times sampled at rate 0.1 for maximum time in order to generate spike trains 
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Readout Reservoir size Network structure Test accuracy 
(%) 

Matlab RP 8 32-20-10 62 
Matlab LM 8 32-30-10 98 
Matlab BP 8 32-50-10 80.4 

Table 6. Test performance with reservoir size 8 
 

Readout Reservoir size Network structure Test accuracy 
(%) 

Matlab RP 15 60-20-10 70.3 
Matlab LM 15 60-30-10 78 
Matlab BP 15 60-50-10 77.5 

Table 7. Test performance with reservoir size 15 
 

Readout Reservoir size Network structure Test accuracy 
(%) 

Matlab RP 27 108-20-10 72 
Matlab LM 27 108-30-10 71.5 
Matlab BP 27 108-50-10 75.3 

Table 8. Test performance with reservoir size 15 
In this experiment, Poisson spike trains were used as input for reservoir but no significant 
improvement is achieved by increasing the reservoir size and accuracy found to be inferior 
than previous experiments where analog values were used. The possible reason is due to the 
highly random Poisson process, the spike trains were randomly generated and reservoir 
couldn’t differentiate between different spike trains. The results vary from one trial to 
another and best results achieved from those trials are reported in Table 6, 7 and 8.  

7. Summary 
One of the key properties of the reservoir computing is their short term memory and ability 
to separate different inputs. This property is called fading or echo state property which is 
very much dependent on the internal dynamics of the reservoir. The memory capacity of 
bigger reservoirs can only be useful if reservoir dynamics are not chaotic. If the reservoirs 
are not stable then regardless of the size, memory characteristics can not be achieved. The 
minicolumns in the cortex appear to be the basic unit of computing where each 
microcolumn consists of few neurons (Mountcastle, 1997). The columns are distributed 
therefore these experiments suggest that small reservoirs with stable dynamics are more 
reliable than bigger chaotic reservoirs. Once an optimal reservoir is investigated, backend 
processing can further improve the overall performance.  
The rationale behind the experiments conducted in this work was not to exhaustively check 
the readouts or suitable front ends, rather to investigate the theoretical framework and its 
viability as a universal classifier. Recently, different aspects of the reservoir computing such 
as mean field theory, edge of chaos, biologically plausible front ends, computational nodes 
and memory capacity have been investigated and reported in (Maass et al., 2002) 
(Skrownski et al., 2007) (Jaeger, 2001) (Verstraeten et al., 2007 ) and (Uysal et al., 2007 ).  The 
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hybrid implementation presented in this chapter is more suitable for the framework of 
reservoir computing and the results provided support the theoretical framework. 
Given the complexity of the speech recognition problem, the paradigm was split into three 
sub sections, front end, back end and optimal reservoir. The components were implemented 
and analyzed individually and integrated for several final experiments. Most of the 
parameter selection in these experiments were empirical and depends on the experience 
related to the reservoir computing. It is obvious from these experiments that pre and post 
processing are important factors because reservoir computing can not guarantee to perform 
well if either the front or backend are not properly selected. Despite the promising results 
obtained through this investigation, a fundamental question remains open regarding the 
way data is pre processed in this study and other related work. In SNNs, pre processing 
may not be the best way to communicate with spiking neurons and this is the fundamental 
area that needs further investigation and which is outside the scope of this book chapter. 
This chapter thoroughly investigated the theoretical framework of reservoir computing and 
extended by analysing the compact reservoir dynamics, front end pre processing and back end 
classification technique. The reservoir based recurrent neural architectures have proven to 
perform better on classification related tasks such as speech recognition, however, their 
performance can be increased if combined with feed forward networks. An alternative 
approach is proposed by utilizing the idea of reservoir computing with efficient feature 
extraction technique and learning by rather simple feed forward network. This framework 
revealed a powerful alternative for recognition task and provides a significant improvement in 
terms of their performance and robustness. To the best of authors’ knowledge, none of the 
existing reservoir based techniques successfully classify the speech recognition problem with 
an extremely compact reservoir. This study emphasized the modelling of a compact dynamic 
reservoir and empirically investigated the short term memory capacity and separation 
property for stable reservoirs. The results show that a stable reservoir and efficient front end 
technique can solve significantly complex recognition task with simple readouts.  
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1. Introduction 
In speaker recognition, features are extracted from speech signals to form feature vectors, 
and statistical pattern recognition methods are applied in order to model the distribution of 
the feature vectors in the feature space. Speakers are recognized by pattern matching of the 
statistical distribution of their feature vectors with target models. Speaker verification (SVR) 
is the task of deciding, upon receiving tested feature vectors, whether to accept or reject a 
speaker hypothesis, according to the speaker’s model. A popular feature extraction method 
for speech signal processing is the mel-frequency cepstral coefficients (MFCC) [Davis & 
Mermelstein, 1980], and Gaussian mixture models (GMM) has become a dominant approach 
for statistical modeling of speech feature vectors for text-independent SVR [Reynolds et al., 
2000]. 
Speaker verification is widely used in telecommunication or conference room applications, 
where reverberation is often present due to the surrounding room environment. The 
presence of reverberation adds distortion to the feature vectors, which results in 
performance degradation of SVR systems due to mismatched conditions between trained 
models and test segments. 
Feature normalization techniques such as the cepstral mean subtraction (CMS) [Mammone et 
al., 1996] and variance normalization [Chen & Bilmes, 2007], and score normalization 
techniques such as the Znorm, Hnorm, Tnorm [Bimbot et al., 2004, Mammone et al., 1996] 
and Top-norm [Zigel & Wasserblat, 2006], were originally developed to compensate for the 
effect of a telephone channel [Mammone et al., 1996], or for the effect of slowly varying 
convolutive noises in general [Reynolds et al., 2000]. For that reason, these techniques may 
be used to reduce the effect of reverberation, if it is characterized by a short-duration room 
impulse response (RIR). However, it may be difficult to find research studies in the literature 
on the effect of CMS on SVR performance under reverberation conditions of long duration 
RIR, which is often the case in room acoustics. 
In cases of long-duration RIR, the target models may be trained using a reverberant speech 
database, as suggested by Peer et al. [Peer et al., 2008], in order to overcome the mismatched 
conditions between the models and the reverberant testing speech segments. This method 
was tested on adaptive-GMM (AGMM) based SVR system, with various values of 
reverberation time (RT - the time that takes the impulse response to decay by 60dB [Schroeder, 
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1965]). Matching of RT between train and test data was reported to reduce the equal error rate 
(EER) from 16.44% to 9.9% on average, when using both Znorm and Tnorm score 
normalizations. 
The methods that were described in the previous paragraph used fixed GMM order, and 
were automatically performing feature normalization. This chapter shows that the effect of 
reverberation on the feature vectors might decrease the optimal GMM order, for Bayesian 
and Kullback information criteria (BIC and KIC, respectively). As a feasibility study, the 
relatively simple case of GMM without adaptation was used, as currently AGMM systems 
are designed for using constant model order. However, the study in this chapter might suit 
a future adjustment of AGMM systems. 
The investigation of the effect of GMM order is based on a study performed by the authors 
[Shabtai et al., 2008a], where only simulated RIRs were used. This chapter also investigates 
the effect of reverberation on the performance of CMS applied to MFCC feature vectors in 
SVR. In that sense, it serves as an extension of an early study of the authors [Shabtai et al., 
2008b], where only simulated RIRs were used to form reverberant speech. Here both 
simulated and measured RIRs are employed. 

2. Room parameters 
Room parameters can either have a direct relation to the physical characteristics of the room, 
or some relation to the RIR. Associated with the physical characteristics of the room we have 
the geometrical characteristics, which are the volume V and the surface area S, and the 
reflection coefficient of the room boundaries, R. The absorption coefficient of the room 
boundaries a is defined as [Kuttruff, 2000] 

 21a R= −  (1) 

and thus the absorption area is 

 A aS=   (2) 

where a  is the average absorption coefficient along the room boundaries. 
An important room parameter that can be measured from the RIR is RT, which is the time 
that takes the energy in a room to decay by 60 dB once the source is turned off. By assuming 
that until the source was turned off it had been producing a stationary white noise, RT can 
be calculated from the RIR by using Schroeder’s energy decay curve [Schroeder, 1965] 

 2 2
10 10 0

 ( ) 10log ( ) 10log ( ) dd
t

e t h hτ τ τ τ
∞ ∞

= −∫ ∫  (3) 

where h (t) is the RIR, and numerically solving 

 e (RT) = −60dB.  (4) 

In the ISO 3382 standard [ISO 3382:1997, 1997], RT is calculated from a least squares based 
linear fitting of Schroeder’s energy decay curve in order to compensate for the non-linearity 
and for the noise-floor effect. 
Room response from a source to a receiver can be given in the frequency domain by the 
room transfer function (RTF). In rectangular rooms, the RTF is known to be a combination of 
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natural or eigen modes. At frequencies where the density of the eigenmodes is more than 
three eigenmodes for a 3dB bandwidth of a given eigenmode, the sound field is usually 
considered to sufficiently satisfy the assumptions of diffuse field theory. In diffuse fields, RT 
is related to the volume by Sabine formula [Kinsler et al., 2000] 

 RT = 0.161 .V
A

 (5) 

3. Feature extraction and normalization 
A commonly used procedure of MFCC feature extraction is shown in Fig. 1 [Bimbot et al., 
2004]. The pre-emphasis filter is applied to enhance the high frequencies of the spectrum, 
which are generally reduced by the speech production process. The STFT block splits the 
signal in the time domain into overlapping frames where the signal is considered to be 
stationary, and calculates the fast Fourier transform (FFT) of each frame. Then, filter banking 
is applied by integrating the magnitude FFT of the signal frames with triangular windows in 
the mel-frequency domain. Afterwards, the dB level is calculated. This results in a series of 
energy scalars for every frame. Discrete cosine transform (DCT) is calculated, from which 
coefficients are selected to form MFCC feature vectors. Applying a discrete-time derivative 
results in ΔMFCC feature vectors, such that 

 T
1 1,[ ] t t t t

t N Nc c c c= … Δ …Δc  (6) 

is the feature vector of the t’th frame (t here is a discrete time index), where N is the number 
of MFCC coefficients. 
Transmission channels may add a convolutive effect to the speech signal prior to the process 
of feature extraction. This may result in feature vectors distortion. For that reason feature 
normalization may be used. In this chapter we discuss the CMS technique, which is the 
operation of subtracting the sample mean [Bimbot et al., 2004] 
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Fig. 1. Extraction of MFCC and ΔMFCC feature vectors from speech signal [Bimbot et al., 
2004]. 
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 tc  = ct − μ           t  =  0 . . . T − 1 (7) 

where μ is the sample mean of the series c0 . . . cT−1. The operation of CMS may include 
variance normalization [Mammone et al., 1996] by dividing the components by the sample 
standard deviation (STD), i.e., 
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where for every n = 1 . . .N, σn is the sample STD of the series 0
nc  . . . 1

n
Tc − . 

4. Speaker verification with GMM approach 
In this section we represent a brief description on SVR with GMM approach [Bimbot et al., 
2004, Mammone et al., 1996]. Speaker verification is the task of accepting or rejecting a 
tested speaker as a hypothetical speaker. Let 

 X = [x0, x1, . . . , xT−1]  (9) 

be a segment of speech feature vectors xt of discrete time t ∈ {0, 1, . . . , T − 1}. Let H1 

represent the event that the tested speaker is the hypothetical speaker, and let H0 represent 
the opposite event. 
The model λ1 is defined to contain the parameters such that a parametric probability density 
function (PDF) p(X; λ1) would model the conditional PDF p(X|H1). In a similar way, λ0 is 
defined such that p(X; λ0) models p(X|H0). For example, if the models assume Gaussian 
distribution, then λ0 and λ1 consist of a mean vector and a covariance matrix. 
The decision is then made according to the log-likelihood ratio test (LLRT) 

 1 0
accept hypothetical speaker

( ) log (  ;  log (  ; 
reject hypothetical speak r

)
 

)
e

p p
θ

λ λ
θ

≥⎧
Λ = − ⎨<⎩

X X X  (10) 

where Λ(X) is referred to as the score function, and θ is the LLRT threshold. If the feature 
vectors in X are assumed independent, then for each model, log p (X; λ) may be calculated by 

 
1

0
log (  ;  ) log (  ;  ).

T

t
t

p pλ λ
−

=
= ∑X x  (11) 

In applications where different speakers have a different number of feature vectors, the 
score function may be normalized by T to form 

 1( ) ( ),
T

Λ = ΛX X  (12) 

in order not to bias the score in favor of speakers with more feature vectors. 
According to the GMM approach, if x is a feature vector, and λ is a set of parameters, then 

 ( )( )

1
(  ;  )  ; 

M
i

i i
i

p pλ ω λ
=

= ∑x x  (13) 
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where M is the number of Gaussians in the GMM, or, the model order, the weights ωi apply 

 
1

1,
M

i
i
ω

=
=∑  (14) 

and pi (x; λ(i)) is a parametric normal PDF. Hence, the sub-model λ(i) consists of a mean vector 
μi and a covariance matrix Σi parameters of a single Gaussian. Hence, 

 
T 1

2

1
2

1
2

) )( (( 1) (  ;  ,
(2 )

) i i i

di i i
i

p p e
π
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x xx x μ μμ Σ  (15) 

where d is the dimension of x. According to (15), the model λ in (13) can be denoted as 
[Reynolds et al., 2000]: 

 1{ , , }i i i i Mλ ω = …= μ Σ  (16) 

The parameters ωi, Σi, and μi are estimated using the expectation maximization (EM) algorithm 
[Dempster et al., 1977]. The covariance matrix Σi can be selected as either diagonal or a full 
matrix. The interpretation of a diagonal covariance matrix is that the feature vector 
coordinates are independent of one another. The computation of the parametric PDFs is 
much simpler in this case. The advantage of the full covariance matrix, however, is the 
enhanced generalization of the parametric PDFs in modeling the conditional PDFs. In 
practice, GMM is used with diagonal covariance matrices to approximate the case of one 
Gaussian with a full covariance matrix with less computational effort. 
Speakers that are known to a certain hypothesis are referred to as target speakers of that 
hypothesis, and impostor speakers to other hypotheses. Performance analysis of SVR is 
measured with miss probability, PMISS, which is the probability that a target model was 
rejected. 

 MISSP ( )  |P( target) ,θ= Λ <X  (17) 

and with the probability of false alarm, PFA, which is the probability that an impostor speaker 
was accepted 

 FAP P( ( )  | impostor).θ= Λ >X   (18) 

Both PMISS and PFA are functions of the threshold θ, and they each come at the expense of the 
other. The threshold θ is used as a parameter to yield the detection error trade-off (DET) curve, 
which plots PMISS as a function of PFA. The point on the DET curve where PMISS equals PFA is 
the EER. The EER is usually used as a scalar measure of the performance of SVR systems. 

5. The effect of reverberation on the feature vectors in GMM 
For reverberant speech, if the RT is larger than the short time Fourier transform (STFT) frame 
size, there will be time-smearing of the feature vectors. An increase in RT increases this 
time-smearing. This effect may cause the Gaussian means of the GMM to come closer 
together. In order to examine this, the weighted average distance between the Gaussians in 
the GMM and the overall mean feature vector can be calculated in the following form: 
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D ω
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= − −∑ μ μ μ μ  (19) 

where M is the GMM order, ωi is the weight of the i’th Gaussian, μi is the mean vector of the 
i’th Gaussian, and μ is the overall mean feature vector. It is assumed that if an increase of RT 
results in closer Gaussians, then D should decrease. 
Figure 2 shows an example of the weighted average distance between the Gaussians in 
GMMs that are trained from reverberant speech signals, which are the result of a 
convolution with simulated RIRs. A normalized form of this distance 
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Fig. 2. Normalized distance between Gaussians and overall mean in a GMM of different 
speakers. Numbers in the legend indicate speaker index in NIST-SRE database. (a) 10 
Gaussians, male speakers; (b) 50 Gaussians, male speakers; (c) 10 Gaussians, female 
speakers; and (d) 50 Gaussians, female speakers. 
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was used, where DRT=0 indicates the weighted average distance between the Gaussians and 
the overall mean feature vector in the case of clean (non-reverberant) speech. The feature 
space of the GMMs in Fig. 2 is of 24 dimensions, and the feature vectors consist of 12 MFCC 
and 12ΔMFCC coefficients. The normalized distance is displayed as a function of RT in both 
logarithmic axes. The STFT frame size is 30 ms. The numbers in the legend of Fig. 2 
represent indices of speakers from the NIST-99 SRE database (see Sec. 7). The GMMs were 
trained using 10 and 50 Gaussians both for male and female speakers. 
The value of Dnorm seems to decrease with the increase of RT. Hence, the Gaussian means of 
the GMM come closer together. As a result, the GMM might need fewer Gaussians. Also 
seen from Fig. 2 is a knee between 100 and 200 msec, where RT is considerably larger than 
the STFT frame size. It should be pointed out that this knee applies to all speakers at similar 
RTs. 

6. The effect of reverberation on the optimal GMM order 
We aim to find an optimal GMM order for reverberant speech. The Bayesian, Akaike, and 
Kullback information criteria (BIC, AIC, and KIC, respectively) [Chen & Huang, 2005] were 
used to estimate the unknown order of the target models with the training observation. The 
criteria are defined as follows 

               ,
1BIC log ( 2 1)lo
2

( g)
M Mp M d Nλ λ= − + +X X  (21) 

 ,AIC log ( ) 2 1( )
M Mp M dλ λ= − + +X X  (22) 

      ,
3KIC log ( ) 2 1( )
2M Mp M dλ λ= − + +X X  (23) 

where M is the order of the model λM, N is the number of feature vectors in the realization X, 
and d is the feature vector dimension. The optimal model order M  was selected for an 
information criterion IC, as the one whose model λM amongst M ∈ {10, 20, 30, 40, 50} yields 
the minimum criterion value for X, or, 

 
{ }IC ,10,20,30,40,50

arg min IC
MM

M λ
∈

= X   (24)  

where IC is one of the information criteria defined above. 
Figure 3 shows an example of the KIC and BIC values of GMMs that are trained from both 
non-reverberant speech signal and reverberant speech signal, which is the result of a 
convolution with simulated RIR. The IC values with 10, 20, 30, 40, and 50 Gaussians were 
normalized for each speaker with the IC value of 30 Gaussians to yield ICnorm. The numbers 
in the legend of Fig. 3(a) represent indices of speakers from the NIST-99 SRE database (see 
Sec. 7), and apply to all sub-figures in Fig. 3. It can be seen that optimal model order in 
terms of minimum KIC for clean speech is 50 ( KICM  in Fig. 3(a)), whereas for reverberant 
speech with RT=0.85 sec (Fig. 3(b)) it reduces to some value in the range of 30 ÷ 50. Optimal 
model order in terms of minimum BIC is in the range of 20 ÷ 40 ( BICM  in Fig. 3(c)), whereas 
for reverberant speech with RT=0.85 sec (Fig. 3(d)) it reduces to 10. The general effect of 
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Fig. 3. KIC and BIC values as a function of GMM order (normalized with KIC and BIC 
values in case of 30 Gaussians), using clean and reverberant speech of male speakers. (a) 
KIC without reverberation, (b) KIC with RT=0.85 sec, (c) BIC without reverberation, and (d) 
BIC with RT=0.85 sec. 
reverberation is therefore to reduce the optimal model order. It should be noted, however, 
that the results have a large variance of model order, but a low variance of IC values. 
Therefore, the significance of model order should be examined in terms of minimum EER of 
a SVR system. 

7. Experimental study of the effect of GMM order on SVR 
In this section, an experimental study of the effect of GMM order on the EER of SVR is 
presented. Reverberant speech training data were generated for several values of RT. The 
image method of Allen and Barkley [Allen & Berkley, 1979] was used to generate a 
simulated impulse response of a room. RT is measured on the impulse response according 
to [Schroeder, 1965]. Speech segments were taken from the national institute of standards and 
technology (NIST) – 1999 speaker recognition evaluation (SRE) database [Martin and Przybocki, 
2000] for training target GMMs. 
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Fig. 4. Comparing results of optimal GMM order using BIC, AIC, and KIC, to the optimal 
GMM order in terms of minimal EER. (a) Optimal model order, (b) EER values. 

Figure 4(a) shows the optimal order for an average of 198 male speakers with one-minute 
long speech segment each. Figure 4(a) also compares the optimal order of BIC, AIC, and KIC 
to the optimal order in terms of minimum EER (the model order among M ∈ {10, 20, 30, 40, 
50} that yields the minimum EER). EER results were generated by a loglikelihood based SVR 
experiment. This experiment included 686 half-minute long reverberant test speech 
segments, generated from the NIST- 99 SRE database. The test speech was introduced to the 
reverberant target GMMs and to a background GMM. The Background GMM was 
generated from 50 speakers, each with a one-minute long speech segment, taken from the 
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NIST-98 SRE database, using reverberant speech with the same RT of the test speech, and a 
constant model order of 256 Gaussians. No channel compensation was used. 
It can be seen that the optimal model order is reduced with the increase of RT for model 
selection according to BIC and KIC. For RT < 0.5 sec, KICM  is similar to the optimal model 
order in terms of minimum EER. For RT > 0.5 sec, BICM  is similar to the optimal model 
order in terms of minimum EER. AICM  is constant 50. 
Fig. 4(b) shows the EER results for the optimal model order of KIC and BIC, compared with 
EER of a constant model order 50, and to the minimum EER. It can be seen that in terms of 
EER values, using a constant model order 50 is similar to using KICM  for RT < 0.5 sec, but 
worse than using BICM  for RT > 0.5 sec. Since BICM  decreases with the increase of RT, 
reducing model order can reduce the EER of SVR in a highly reverberant environment. 

8. Experimental study on the performance of CMS applied in SVR under 
reverberation 
An early study of the authors [Shabtai et al., 2008b] has investigated the effect of 
reverberation on the efficiency of CMS in improving the performance of SVR. The 
performance of an SVR system was measured by calculating the EER in rooms with 
different RTs and volumes. Test speech segments were made reverberant with RIRs that 
were simulated using the image method of Allen and Barkley [Allen & Berkley, 1979]. It was 
shown that for high RTs, the efficiency of CMS decreases. 
In this section we extend the research to reverberant speech generated by convolution with 
measured RIRs. The environments in which the RIRs were measured are tabulated in Tab. 1. 
Measured RIRs 1 ÷ 10 were measured with Brüel & Kjær 4295 Omni-Source loudspeaker 
and Brüel & Kjær 4942 1

2 -inch diffuse-field microphone, at selected rooms in Ben-Gurion 
University of the Negev, Israel (BGU). Measured RIRs 11 ÷ 14 were taken from the Concert Hall 
Research Group (CHRG) project [CHR, 2004]. In order to compare the results with simulated 
RIRs, the image method was used to simulate RIRs of rooms with similar dimensions and 
RTs to the rooms in Tab. 1. 
The SVR system was using 20 msec speech frames in which MFCC and ΔMFCC were 
calculated to form 24-dimensional feature vectors, for which CMS was either applied or not. 
Target models were trained using the AGMM approach [Reynolds et al., 2000]. A background 
GMM (BGM) of 1024 Gaussians was generated from one-minute long non-reverberant 
speech segments of 50 speakers, taken from the NIST- 1998 SRE database. This BGM was 
used to train target AGMMs for 198 male speakers, with one-minute long non-reverberant 
speech segments, taken from the NIST-1999 SRE [Martin and Przybocki, 2000] database. Test 
speech segments were taken from NIST-1999 SRE, for 686 male speakers with half-minute 
long speech segment each. The test speech segments were made reverberant by convolving 
them with simulated and measured RIRs. The EER results were calculated by introducing 
the reverberant test speech segments to the target AGMMs and BGM of non-reverberant 
speech. 
Figure 5 shows a scatter plot of EER values as a function of RT. The cross, circle, and triangle 
marks on Fig. 5 represent EER values when either feature normalization was not used, or 
CMS was applied, or CMS was applied along with variance normalization, respectively. 
Linear fitting to the EER values is shown in Fig. 5. Thick solid curves denote using no  
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RIR Environment RT 
[sec] Vi[m3] 

1 Building 33 Office 126 0.8 37 

2 Building 33 Office 427 0.6 42 

3 Building 34 Classroom 103 0.6 120 

4 Building 33 Lecture room 102 0.5 147 

5 Building 34 Classroom 202 1 301 

6 Building 33 Teaching lab 204 0.6 339 

7 Building 26 Auditorium 4 1.5 793 

8 Building 26 Auditorium 5 1.2 1142 

9 Building 26 Auditorium 6 1.3 1142 

10 Sonnenfeld lecture room 1 2529 

11 Mechanics Hall (Worchester, MA) 2.4 8367 

12 Troy Music Hall (Troy, NY) 2.6 11320 

13 Boston Symphony Hall (Boston, MA) 2.6 16611 

14 Kleinhans Music Hall (Buffalo, NY) 1.9 18241 

Table 1. Rooms in which RIRs were measured. 
 

feature normalization, dashed curves denote using CMS, and with thin solid curves denote 
using CMS along with variance normalization. Figures 5(a) and 5(b) refer to simulated and 
measured RIRs, respectively. In the case of simulated RIRs as well as in the case of measured 
RIRs, it can be seen that CMS is improving the performance of SVR in a reduced manner 
with the increase of RT. Moreover, it can be seen that for some high values of RT, CMS may 
increase the EER rather than decrease it. These results support previous results [Shabtai et 
al., 2008b] in which it was shown that CMS is improving the performance of SVR in a 
reduced manner with the increase of RT, and validate them with measured RIRs. 

9. Conclusion 
The effect of GMM order on SVR with reverberant speech was investigated. Time-smearing 
of the feature vectors due to reverberation reduces the optimal GMM order in terms of 
minimum BIC and KIC. When tested on a GMM-based SVR system, reducing model order 
improves system performance for highly reverberant speech. A future adjustment to 
AGMM may be proposed in this direction 
The effect of room volume and RT on the performance of CMS applied to MFCC feature 
vectors in SVR was investigated. It was shown that the performance of CMS may degrade 
with the increase of RT. In some cases of high RT, CMS may increase the EER of SVR rather 
than decrease it. Hence, in these cases, CMS should not automatically be used. As a future 
work, we purpose combining a CMS decision block in SVR. 
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Fig. 5. EER values of SVR with reverberant speech as a function of RT. Cross marks ("x") 
denote no feature normalization (linear fitting with thick solid line), circles ("o") denote CMS 
(linear fitting with thick dashed line), and triangles (’Δ’) denote using CMS with variance 
normalization (linear fitting with thin solid line). Test speech segments were made 
reverberant by convolution with (a) simulated, and (b) measured RIRs. 
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Body-Conducted Speech Recognition and  
its Application to Speech Support System 

Shunsuke Ishimitsu 
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Japan 

1. Introduction  
In recent years, speech recognition systems have been used in a wide variety of environments, 
including internal automobile systems. Speech recognition plays a major role in a dialogue-
type marine engine operation support system currently under investigation. In this system, 
speech recognition would come from the engine room, which contains the engine apparatus, 
electric generator, and other equipment. Control support would also be performed within the 
engine room, which means that operations with a 0-dB signal-to-noise ratio (SNR) or less are 
required. Noise has been determined to be a portion of speech in such low SNR environments, 
and speech recognition rates have been remarkably low. This has prevented the introduction 
of recognition systems, and up till now, almost no research has been performed on speech 
recognition systems that operate in low SNR environments. In this chapter, we investigate a 
recognition system that uses body-conducted speech, that is, types of speech that are 
conducted within a physical body, rather than speech signals themselves. Since noise is not 
introduced into body-conducted signals that are conducted in solids, even within sites such as 
engine rooms which are low SNR environments, it is necessary to construct a system with a 
high speech recognition rate. However, when constructing such systems, learning data 
consisting of sentences that must be read a number of times is required for creation of a 
dictionary specialized for body-conducted speech. In the present study we applied a method 
in which the specific nature of body-conducted speech is reflected within an existing speech 
recognition system with a small number of vocalizations.  
On the other hand, people with speech disabilities face communication problems in daily 
conversation. They can communicate with substitute speech, but this does not have the 
required frequency to be readily understood in daily conversation. Therefore, we have 
proposed the speech support system with body-conducted speech recognition. The system 
retrieves speech from the body-conducted speech via a transfer function using recognition 
to decide on a subword sequence and the duration. Before constructing the system, we 
examined the effectiveness of body-conducted speech recognition for communication 
disorders. The first step in constructing the system involved investigating continuous word 
unit speech recognition, using an acoustic model not suited to body-conducted speech for 
communication disorders. In this study, we analyzed each parameter of these speeches and 
experimented with body-conducted speech recognition. We concluded that an adaptation 
using body-conducted speech recognition to achieve high recognition performance for 
disorders is valid. 
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2. Noise-robust body-conducted speech recognition system  
2.1 Dialogue-type marine engine operation support system using body-conducted 
speech 
Since the number of sailors has decreased dramatically in recent years, there is a shortage of 
skilled maritime engineers. Therefore, a database which stores the knowledge used by 
skilled engineers has been constructed (Matsushita & Nagao,2001).  
In this study, this knowledge database is accessed by speech recognition. The system can be 
used to educate sailors and make it possible to check the ship's engines. 
Figure 1 shows a conceptual diagram of a dialogue-type marine engine operation support 
system using body-conducted speech. The signals are detected with a body-conducted 
microphone and then wirelessly transmitted, and commands or questions from the speech-
recognition system located in the engine control room are interpreted. A search is made for 
a response to these commands or questions speech recognition results and confirmation on 
the suitability of entering such commnads into the control system is made. Commands 
suitable for entry into the control system are speech-synthesized and output to a monitor. 
The speech-synthesized sounds are replayed in an ear protector/speaker unit, and while 
continuing communication, work can be performed while safety is continuously confirmed. 
The present research is concerned with the development of the body-conducted speech 
recognition portion of this system. In this portion of the study, a system was created based 
on a recognition engine that is itself based on a Hidden Markov Model (HMM) incidental to 
a database (Itabashi, 1991). 
 

 
Fig. 1. Dialogue-type marine engine operation support system using body-conducted 
speech. 
With this system, multivariate normal distribution is used as the output probability density 
function, and a mean vector μ that takes an n-dimensional vector as the frame unit of speech 
feature quantities and a covariance matrix Σ are used; these are expressed as follows: (Baum, 
1970) 
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HMM parameters are shown using the two parameters of this output probability and the 
state transition probability. To update these parameters using conventional methods, 
utterances repeated at least 10-20 times would be required. To perform learning with only a 
few utterances, we focused on the relearning of the mean vector μ within the output 
probability, and thus created a user-friendly system for performing adaptive processing. 

2.2 Investigation into identifying sampling locations for body-conducted speech  
2.2.1 Investigation through frequency characteristics 
 

 
Fig. 2. Sampling location for body-conducted speech. 

Figure 2 shows candidate locations for body-conducted speech during this experiment. 
Three locations - the lower part of the pharynx, the upper left part of the upper lip and the 
front part of the zygomatic arch - were selected as signal sampling locations. The lower part 
of the pharynx is an effective location for extracting the fundamental frequency of a voice 
and is often selected by electroglottograph (EGG). Since the front part of the zygomatic arch 
is where a ship's chief engineer has his helmet strapped to his chin, it is a meaningful 
location for sound-transmitting equipment. The upper left part of the upper lip is the 
location that was chosen by Pioneer Co., Ltd. for application of a telecommunication system 
in a noisy environment. This location is confirmed to have very high voice clarity (Saito et 
al., 2001). Figure 3 indicates the amplitude characteristics of body-conducted speech signals 
at each location, and also shows the difference between a body-conducted signal on the 
upper lip and the voice when a 20-year-old male reads "Denshikyo Chimei 100" (this is the 
Japan Electronics and Information Technology Industries Association (JEITA) Data Base 
selection of 100 locality names). Tiny accelerometers were mounted on the above-mentioned 
locations with medical tape. Figure 3 indicates that the amplitudes of body-conducted 
speech at the zygomatic arch and the pharynx are 10-20 dB lower than body-conducted 
speech at the upper left part of the upper lip. The clarity of vibration signals from body-
conducted speech was poorer using signals from all sites except the upper left part of the 
upper lift in the listening experiment. Some consonant sounds that were not captured at 
other locations were extracted at the upper left part of the upper lip. However, compared to 



 Advances in Speech Recognition 

 

54 

the speech signals shown in Figure 4, the amplitude characteristics at the upper left part of 
the upper lip appear to be about 10 dB lower than those of the voice. Based on frequency 
characteristics, we believe that recognition of a body-conducted signal will be difficult 
utilizing an acoustic model built using acoustic speech signals. However, by using the upper 
left part of the upper lip, the site with the highest clarity signals, we think it will be possible 
to recognize body-conducted speech with an acoustic model built from acoustic speech 
using adaptive signal processing or speaker adaptation. 
 

 
Fig. 3. Frequency characteristics of body-conducted speech. 

 
Fig. 4. Frequency characteristics of body-conducted speech and speech. 

In this study, we examined a word recognition system. To investigate the possibility of 
building a body-conducted speech recognition system with a speech model without 
building an entirely new body-conducted speech model, we compared sampling locations 
for body-conducted speech parameters at each location, and parameter differences amongst 
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words. Figure 5 shows the difference on mel-cepstrum between speech and body-conducted 
speech at all frame averages. Body-conducted speech concentrates energy at low frequencies 
so that it converges on energy at lower orders like the lower part of the pharynx and the 
zygomatic arch, while the mel-cepstrum of signals from the upper left part of the upper lip 
shows a resemblance to the mel-cepstrum of speech. They have robust values at the seventh, 
ninth and eleventh orders and exhibit the outward form of the frequency property 
unevenly. 

 
Fig. 5. Mel-cepstrum difference between speech and body-conducted speech. 

Although the upper left part of the upper lip has the closest proximity to voice 
characteristics, it does not capture all of the characteristics of speech. This caused us to 
conclude that it is difficult to build a body-conducted speech model solely with a voice 
model. 
We concluded that it might be possible to build a body-conducted speech recognition 
system by building a model at the upper left part of the upper lip and optimizing speech-
conducted speech signals based on a voice model. 

2.3 Recognition experiments 
2.3.1 Selection of the optimal model 
The experimental conditions are shown in Table 1. For system evaluation, we used speech 
extracted in the following four environments: 
• Speech within an otherwise silent room 
• Body-conducted speech within an otherwise silent room 
• Speech within the engine room of the Oshima-maru while the ship was running  
• Body-conducted speech within the engine room of the Oshima-maru while the ship was 

running 
Noise within the engine room of the Oshima-maru when the ship was running was 98 dB 
SPL (Sound Pressure Level), and the SNR when a microphone was used was -25 dB. This 
data consisted of 100 terms read by a male aged 20, and the terms were read three times in 
each environment. 
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Valuation method  Three set utterance of 100 
words  

Vocabulary  JEITA 100 locality names  

Microphone position From the month to about 
20cm   

Accelerator position  The upper left part of the 
upper lip  

Table 1. Experimental conditions 
 

  anchorage cruising 
  Speech Body Speech Body

Anechoic room 45% 14% 2% 45% 

Anechoic room 
+ noise 64% 10% 0% 49% 

Cabin  35% 9% 1% 42% 
Cabin + noise  62% 4% 0% 48% 

Table 2. The result of preliminary testing 

Extractions from the upper left part of the upper lip were used for the body-conducted 
speech since the effectiveness of these signals was confirmed in previous research (Ishimitsu 
et al, 2001, Haramoto et al, 2001). the effectiveness of which has been confirmed in previous 
research. The initial dictionary model to be used for learning was a model for an unspecified 
speaker created by adding noise to speech extracted within an anechoic room. This model 
for an unspecified speaker was selected through preliminary testing. The result of 
preliminary testing is shown in Table 2. 

2.3.2 The effect of adaptation processing 
The speech recognition test results in the cases where adaptive processing (Ishimitsu & 
Fujita, 1998) was performed for room interior speech and engine-room interior speech are 
shown in Table 3, and in Figures 6 and 7. The underlined portions show the results of the 
tests performed in each stated environment. In tests of recognition and signal adaptation via 
speech within the machine room, there was almost no operation whatsoever. That result is 
shown in Figure 6, and it is thought that extraction of speech features failed because the 
engine room noise was louder than the speech sounds. Conversely, with room interior 
speech, signal adaptation was achieved. When environments for performing signal 
adaptation and recognition were equivalent, an improvement in the recognition rate of 
27.66% was achieved, as shown in Figure 7. There was also a 12.99% improvement in the 
recognition rate for body-conducted speech within the room interior. However, since that 
recognition rate was around 20% it would be unable to withstand practical use. 
Nevertheless, based on these results, we found that using this method enabled recognition 
rates exceeding 90% with just one iteration of the learning samples. 
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Fig. 6. Signal adaptation with speech (crusing). 
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Fig. 7. Signal adaptation with speech (room). 
 

  Candidate for adaptation 

Valuation Room Engine Room No 
adaptation 

Speech(Room) 90.66 1.33 63.00 
Body(Room) 22.66 1.33 9.67 
Speech(Engine) 1.00 1.50 0.67 
Body(Engine) 46.50 1.50 45.00 

Table 3. Result of adaptation processing with speech ( % ) 

The results of cases where adaptive processing was performed for room-interior body-
conducted speech and engine-room interior body-conducted speech are shown in Table 4, 
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and in Figures 8 and 9. Similar to the case where adaptive processing was performed using 
speech, when the environment where adaptive processing and the environment where 
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Fig. 8. Signal adaptation with body-conducted speech (room). 
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Fig. 9. Signal adaptation with body-conducted speech (crusing). 
 

  Candidate for adaptation 

Valuation Room Engine Room No 
adaptation 

Speech(Room) 40.67 46.17 63.00 
Body(Room) 86.83 26.83 9.67 
Speech(Engine) 1.50 1.00 0.67 
Body(Engine) 49.00 95.50 45.00 

Table 4. Result of adaptation processing with body-conducted speech ( % ) 
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recognition  was  performed  were  equivalent,  high recognition rates of around 90% were 
obtained, as shown in Figure 8. In Figure 9. It can be observed that signal adaptation using 
engine-room interior body-conducted speech and speech recognition results were 95% and 
above, with 50% and above improvements, and that we had attained the level needed for 
practical usage. 

3. Speech support system using body-conducted speech recognition for 
disorders 
In late year, the number of people with disabilities that impede normal speech communication 
has recently increased. Pharyngeal cancer is one of the many disorders affecting such people 
confirmed by the increasing number of pharynx-related surgery. Although most affected 
patients recover well after surgery, they develop speech disorders. As a result, they have to 
deal with speech communication problems in their daily conversations. 
The most common solution used for speech disorders is esophagus vocalization, which is 
inexpensive and does not require surgery. Such vocalization involves inhaling air into the 
stomach, and then breathing it out into the surrounding air. The new glottis in the lower 
pharyngeal mucous membrane then vibrates, changing air into esophageal speech through 
the articulation organ between the pharynx and mouth. In this way, a functionally 
disordered individual can generate esophageal speech. However, esophageal speech does 
not provide optimal fundamental frequency, high-frequency component, and power for 
daily conversations. Therefore, people with esophagus vocalization still have problems of 
communication in noisy situations encountered in daily life. Many researchers have 
attempted to improve the quality of esophageal speech and have looked at methods to 
achieve clear vocalization from body-conducted speech and the construction of speech 
synthesis systems. Here, we describe relevant prior research for retrieving good quality 
esophageal speech. 
Akimoto, et al. are improved its quality retrieval on fundamental frequency (Akimoto et al., 
2002). Nakamura, et al. are constructed voice conversion system using transmitted artificial 
speech (Nakamura et al., 2007). Ando, et al. proposed speech synthesis system for Chinese 
language training system (Ando & Takagi, 2007). We propose speech support system using 
body-conducted speech recognition for disorders. This system is able to extract a signal in a 
noisy environment using an accelerator.  
However, conventional techniques cannot create clear speech, including the speaker’s 
particular speech characteristics. To resolve this problem, we use continuous sub-word 
body-conducted speech recognition and a sub-word unit transfer function database. We 
propose a new solution for disorders based on a speech support system that uses 
bodyconducted speech recognition. Typically, the system uses body-conducted speech as 
the vocal chord signals, so it differs from that using the  vocal chords with an impulse 
response to the input signal (Fukushima & Kido, 2007, Morise et al., 2007). 

3.1 Proposed system  
Here, we describe the speech support system using body-conducted speech recognition and 
sub-word transfer functions. Figure 10 shows an outline of the speech support system for 
disorders. 
First, a disabled person makes an utterance through esophageal speech, and the system 
extracts body-conducted speech with an accelerator pickup. Second, the system estimates  
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Fig. 10. Speech support system for disorders. 

the sub-word unit sequence and its duration. Esophageal speech is then changed into 
recovery speech using the transfer function of the presumed sub-word unit through 
recognition of the output information. Finally, the system connects each recovery signal of 
the sub-word unit, and recreates the utterance with them. 
This system has several advantages. Esophageal speech does not have sufficient volume 
compared with normal speech, and therefore, a speech disabled person faces a variety of 
problems in conversations with typical everyday noise. This becomes a problem when the 
conversation partner cannot hear the esophageal speech. However, with our system, even in a 
noisy environment, esophageal speech can be heard using body-conducted speech. Because 
the transfer function used by our system expresses each speaker’s characteristics, the proposed 
system becomes a refection of each speaker. As well, because body-conducted speech is used 
as vocal cord signals, the signals hold linguistic informations such as fundamental frequency. 
When body-conducted speech is used, it is expected that the recovered speech will contain 
recognition errors and the system can then choose different transfer functions. 

3.2.1 Advantages of the system 
The system has following several advantages. 
• The system works on high noisy environment 
• Transfer functions has possess a robust individuality of each disorders characteristics 
• The system uses vocal code user’s body-conducted speech 
• It is expected that the retrieved speech can approximate clear speech when recognition 

errors are considered. 
Esophageal speech does not have sufficient volume compared with normal speech, so 
disabled people have a problem when conversing in noisy environments. However, this 
problem can be solved using body-conducted speech, since the signal can function correctly 
in noisy environments. Transfer functions in the system each express the individual 
characteristics of a user. The reason for this is explained in the next section. Moreover, using 
body-conducted speech as vocal chord information means that it contains linguistic 
information, such as the fundamental frequency and so on. Also, the recognition system can 
be amended when the system retrieves speech using a different transfer function. 



Body-Conducted Speech Recognition and its Application to Speech Support System   

 

61 

3.2.2 Controversial issues in constructing the system 
To construct the system, it has to examine following kinds. 
• Effectiveness of continuous sub-word unit recognition system. 
• Construction of continuous sub-word unit cross spectrum transfer function database. 
• Effectiveness of the retrieved speech with respect to the frequency component and the 

ability to hear it. 
Here, we discuss the effectiveness of the system for healthy people only. As a next step, we will 
construct a system for the speech disabled, which, as such,  is beyond the scope of this paper. 

3.3 Continuous sub-word recognition 
3.3.1 Decoding algorithm of continuous sub-word recognition 
Continuous sub-word unit recognition is important for body-conducted speech recognition in 
the system, since it is necessary to estimate each sub-word sequence and the duration times. 
This decoding system, constructed using the Julian/Julius tools, is known as Japanese Large 
Vocabulary Continuous Speech Recognition (LVCSR) (Kawahara et al., 1999). Although the 
Julius speech recognition engine needs a language model, our decoding system does not. 
Instead of a language model, our system contains a descriptive grammar. The continuous sub-
word unit recognition includes the grammar, and is executed iteratively by a sound model and 
silent model of the mora or syllable unit. The decoding system is involved in sub-word 
continuous recognition. We have already demonstrated the effectiveness of body-conducted 
speech recognition using an acoustic model with the parameters estimated by body-conducted 
speech. By using this technique, the recognition system using body-conducted speech can 
correctly estimate a sub-word sequence and its duration. 

3.3.2 Determination of signal sampling location for body-conducted speech 
In a previous section, we examined signal sampling locations for body-conducted speech by 
comparing recognition parameters for each location. For this experiment, the upper lip was 
chosen as the signal sampling location for body-conducted speech. In the system, we use the 
pharynx as the body-conducted signal sampling location. This position is very close to the 
pharynx, so we expect this to be a suitable location for body-conducted speech as vocal 
code. If this sampling location is not suitable for executing this system, we will use the 
upper lip. The upper lip and pharynx have already been used effectively in isolated word 
recognition systems using body-conducted speech. 

3.4 Construction of sub-word unit transfer function database 
In this section, first, we explain fundamental transfer function between speech and body-
conducted speech. Then we consider a transfer function between speech and body-
conducted speech. We examine the word unit transfer function using a cross spectrum 
method as in previous research, however, this result is not effective since a word contains 
several consonants, and is complex compared with a sub-word. So we need to examine the 
effectiveness of several sub-word units of the retrieved speech, such as the syllable, semi-
syllable and mora. 

3.4.1 Relationship of transfer functions 
Speech is synthesized by the vocal chords and the transfer function expressed by the oral and 
nasal cavities, while body-conducted speech is expressed by the body and skin. There is a 
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relationship between the transfer functions of speech and body-conducted signals as shown in 
Figure 11, where disabled people are those with disorders from cancer of the pharynx, and 
healthy people are those that are able to utter spoken speech. The Esophagus and BCS are the 
utterance styles for each group, respectively. BCS means body-conducted speech while 
Esophageal denotes esophageal speech. In this study, we propose sub-word transfer functions 
that allow those using body-conducted speech to speak as healthy individuals. These transfer 
functions are estimated using a cross spectrum method where each signal is a sub-word. 
 

Healthy

Disabled

Speech

Esophageal

BCS

BCS

HSpeech-DisabledBCS

HEsophageal-BCS

HSpeech-BCS

 
Fig. 11. Relationships of transfer functions between speech and body-conducted speech 

3.4.2 Cross spectrum method 
In this section, first, we will explain the basic principles of the transfer function between 
normal speech and body-conducted speech. Second, we describe the technique of making a 
sub-word unit transfer function using a cross-spectral method that makes use of speech and 
body-conducted speech healthy. In a previous study, we developed a word unit transfer 
function that used a cross-spectral method. Therefore, we investigated the validity of speech 
recovery with several sub-word units such as the syllable, semi-syllable, and Mora. Speech 
consists of a transfer function expressed as vocal cord signals, in the mouth and the nasal 
cavity. Moreover, as for body-conducted speech, the signals involve the body or skin. Figure 
11 shows the relationship between the transfer function in speech and body-conducted 
speech. For every speaker, the utterance styles can be body-conducted speech body-
conducted speech and esophageal. Here, we propose the use of a sub-word transfer function 
that converts disordered body-conducted speech into that of a healthy person. This transfer 
function was estimated using the cross-spectral method that makes use of each sub-word 
signal. Although speech from a disabled person was not available, speech sounds had 
previously been recorded, and our proposed system allows the recovery of these speech 
sounds. In the absence of any historical speech records, a transfer function is used to 
estimate the speech sounds from speakers such as a relative. 
In applying the system, we investigated the following issues. 
• Effectiveness of sub-word unit transfer functions made by cross spectrum method 
• Examination for deciding sub-word unit 
The system constructed for Japanese, so we examined several sub-word units. 
• Phoneme 
• Syllable and Semi-syllable 
• Mora 
Phonemes and semi-syllables are the smallest sub-word units. In pilot experiments, it was 
found that these do not estimate enough of each sub-word parameter of the cross spectrum 
transfer functions. Thus in further experiments, we examined the syllable and mora, which are 
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longer than the other candidates. These candidates were found to estimate stable parameters 
for each sub-word transfer function. Because the Japanese language is constructed of several 
moras, we chose the mora as the unit in our system. Next, we discuss what should be used in 
the system as the transfer function unit. In this paper, we discuss the recognition sub-word 
unit and making transfer functions for context independent models only. However, the system 
performance is expected to improve if transfer functions can be created for context dependent 
models, and recognition performance should improve accordingly. 

3.4.3 Transfer function database 
To construct a transfer function database, we need to consider the following issues. 
• An estimate of how many transfer functions need each type of signal samples 
• The problem of difference phonetic contexts for each sub-word environment 
The cross spectrum method expects transfer function parameters to have only one set of 
signals for each pair of samples. However, these transfer functions have to use all contexts 
of the sub-word sequence when using an acoustic model for recognition and speech 
retrieval. To estimate a transfer function, we use all context samples to create a transfer 
function database. However, as samples often contain silence at the start and end of the 
sample, the transfer function is not able to capture the characteristics of the frequency 
magnitude. This problem is discussed in the next section. As the first step in the system, we 
focus on context-dependent sub-word transfer functions and creating transfer functions 
from one pair of set signals of speech and body-conducted speech for each sub-word. We 
have already explained that if a context dependent transfer function is used, the techniques 
used in the system are significantly improved. 

3.5 Investigation of the effectiveness of transfer function with speech 
In this section, we examine the effectiveness of a cross spectrum method in speech retrieval. If 
a recognition system contains recognition errors, it does not function correctly. To investigate 
this problem, we divided the experiment into two cases with different experimental 
conditions. One system carries out recognition correctly, while the other contains errors. 

3.5.1 Experimental setup for speech retrieval experiments 
Speech is recorded with a microphone placed 30 cm from the speaker. Body-conducted 
speech is extracted with an accelerator and its amplitude is then boosted by a suitable 
amplifier with the accelerator position set as the upper lip. These experiments focus only on 
the effectiveness of speech retrieval using the proposed method. This position is best for 
picking up body-conducted speech clearly with an accelerator. Each signal is recorded with 
16 bit, 48 kHz sampling, and then both signals are synchronized after each signal is 
converted from 48 kHz to 16 kHz on a computer. In the experiment, words read by a 20-
year-old male are recorded by the microphone.  
One of the words is ”Asahi (/a/, /sa/, /hi/)” and it is also contained in the JEIDA database 
with 100 locality names. This word has several different phonetics. The system uses Julian as 
the recognition decoder. The purpose of this experiment is to estimate only the boundary of 
each sub-word, because we use Julius for supervised recognition.  
The recognition system consists of a 2-stage decoder with a decoding algorithm. The first stage 
uses a bi-phone and 2-gram model to calculate approximately the N-best results, while the 
second stage calculates details of each of the N-best results using a tri-phone and 3-gram model. 
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Recognition errors are generated from correct results, by changing correct to fail in each sub-
word. The following labels are examined in this experiment. 
• Correct: /a/, /sa/, /hi/ 
• Incorrect: /hi/, /hi/, /a/ 
These labels are used when esophageal speech is converted to retrieved speech. 

3.5.2 Investigation of speech retrieval from body-conducted speech 
Here we discuss details of the results of the retrieval experiment. Figure 12 shows the speech 
that is extracted using the microphone, while Figure 13 shows the body-conducted speech that 
is picked up with the accelerator. The upper parts of the figures show wave form data while 
the lower parts show the corresponding spectrograms. The speech is very clear, and thus 
speech characteristics such as formant frequency and high resolution frequency can be found. 
On the contrary, the body-conducted speech does not have these characteristics and this signal 
is not as clear as that of the normal speech. Comparing speech and body-conducted speech, 
the body-conducted signal cannot capture high frequency components of 2 kHz or more, 
which indicates that body-conducted signals do not have any formant frequency. Therefore, 
the body-conducted signal is not a naturally produced signal and is a lower quality signal 
compared with speech signals. Figure 14 shows the retrieved speech using correct recognition 
results, whereas Figure 15 shows the retrieved speech using incorrect recognition results. In 
Figure 14, we observe frequency retrieval at 2 kHz or more and formant frequencies. Focusing 
on each sub-word signal, each signal represents several formant frequencies using the sub-
word unit transfer function. For this reason, it is clear that the system is effective. In Figure 15, 
we see that frequency retrieval at 2 kHz is not adequate to obtain the same retrieval results 
compared with Figure 14. However, each recognition result is not correct, and therefore, its 
signal contains other signal formant frequencies. 
 

 
Fig. 12. Speech 

 
Fig. 13. Body-conducted speech 
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Fig. 14. Retrieved speech using correct recognition results 
 

 
Fig. 15. Retrieved speech using incorrect recognition results with errors 

4. Conclusion 
First, we investigated a body-conducted speech recognition system for the establishment of 
a usable dialogue-type marine engine operation support system that is robust in noisy 
conditions, even in a low SNR environment such as an engine room. By bringing body-
conducted speech close to audio quality, we were able to examine ways to raise the speech 
recognition rate. We introduced an adaptive processing method and confirmed the 
effectiveness of adaptive processing via small repetitions of utterances. In an environment of 
98 dB SPL, improvements of 50% or above of recognition rates were successfully achieved 
within one utterance of the learning data and speech recognition rates of 95% or higher were 
attained. From these results, it was confirmed that this method will be effective for 
establishment of the present system. 
Second, we have proposed a speech support system using body-conducted speech 
recognition. Such a recognition system can provide people with disorders related to cancer 
of the pharynx with a new speech communication tool for conversation. The system consists 
of a body-conducted speech recognition method and a transfer function database. The 
recognition system provides each sub-word and its duration per sentence in speech 
conversation. Based on this information, the system is able to retrieve the speech using the 
sub-word unit transfer function. In recognizing correct and erroneous results, we confirm 
each signal improvement based on its waveform and spectrogram. In particular, the 
experiments confirmed that retrieved speech of healthy people approximates the retrieval of 
speech signals with high frequency and formant information. In future work, we will apply 
the system to those with speech disorders, and the new system will examine the possibility 
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of a recognition system to assist disabled people with conversation and to estimate natural 
speech retrieval. 
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1. Introduction     
With the growing availability of various content provided over state-of-the-art digital media is 
speech recognition becoming one of the main core technologies (Billi et al., 1997; Žgank et al., 
2002; Gupta et al., 2000; Sket et al., 2002). Its task is to minimize the needed effort to access the 
particular part of content. The main content categories can be grouped in the following way: 
• broadcasted media, 
• public and governmental content, 
• entertainment, 
• education, 
• meetings, 
• personal communication, 
• personal repositories,… 
The common point of all items is that characteristics of such spoken content widely diverge 
from type of speech, which is commonly found in spoken language resources used for training 
automatic speech recognition systems (Maddi et al., 2006; Marvi, 2006; Al-Haddad et al., 2006a; 
Al-Haddad et al., 2006b; Thangarajan et al., 2008). The main issue, which influences the quality 
of speech recognition, is the presence of spontaneous speech with all its special requests and 
characteristics. A speaker in such scenario can speak freely, without planning his/her speech. 
The vocabulary has size of several 10k words, which hardly depends on the properties of 
language involved. For less inflectionally  and morphologically complex languages (e.g.: 
English, Spanish, Italian,…), the size of 64k vocabulary words can cover more than 99% of 
words in the test set (out-of-vocabulary (OOV) rate). On the other side are complex highly 
inflectional and agglutinative languages (e.g.: Finnish, Hungarian, Slovenian, Czech …), where 
the same size of vocabulary produces the OOV of 10% or even more. 
In such cases present all various effects of spontaneous speech an additional parameter, 
which reduces the quality and performance of speech recognition for several percents. The 
applications where such problems can occur are: speech-to-speech translation system, “how 
can I help you?” telecommunication services, TV subtitling services, spoken content 
indexing services... 
Real time TV subtitling service as one of the emerging services (Lambourne et al., 2004; 
Brousseau et al., 2003; Imai et al., 2000) in current and future society with increased 
proportion of elderly people is gathering on importance. The proportion of broadcasted 
content, which can’t be immediately subtitled from content scripts, hardly depends on the 
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show’s type. In a typical broadcast news show, approximately 50% to 75% of stories can be 
automatically subtitled using closed caption generated from the scripts. Example of such 
Slovenian evening news show script is given on Figure 1. 
 

 
Fig. 1. Evening TV news show script, a part of the Slovenian BNSI Broadcast News database. 

The remaining part of the show isn’t covered, as it contains live conversations (e.g. 
interviews, talk shows), where closed captions can’t be generated from scripts or scenarios. 
Example of such script part is shown on Figure 1, denoted as section “03 izjava župana”, 
where only the last few seconds are transcribed as guideline for the director. These parts of 
shows must be covered with dedicated methods as is spontaneous speech recognition. Two 
methods can be used for producing closed captions: respeaking, where a highly trained 
operator respeakes all utterances in an of-the-shelf dictation system or a fully automated 
subtitling system, which must process the entirely show, usually in several steps. 
Automatic recognition of spontaneous conversations is a very challenging task. There are 
three major groups of disfluencies in spontaneous speech that influence the quality and 
performance of any spontaneous speech recognition system:  
• Filled pauses (FP): short words, which appear as interjection – e.g.: uh, aaa. They are 

language dependent. 
• Word repetitions: disfluencies used by the speaker to gain time before continuing with 

the sentence. 
• Sentence restarts: speaker pronounces the initial part of a sentence and then starts over 

again with a new initial part.  
Figure 2 shows example of spontaneous sentence (“mirna sobota ki ee so jo mnogi”) from 
Slovenian BNSI Broadcast News database. The shown sentence encompasses one filled 
pause – “eee”. The ratio of disfluencies in spontaneous speech hardly depends on the 
situation. In case when the speech is prepared in advance, there are far less disfluencies than 
in case when spontaneous speech is used in everyday situation. 
The presented characteristics of spontaneous speech influence both types of models in a 
system – acoustic and language model. On the other side, the accents mainly influence the 
performance of acoustic models. Spontaneous conversation can involve a high degree of 
accented speech, depending of the discourse properties. In case of broadcast news language 
resources various groups of interviews include such discourse. 
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Fig. 2. Spontaneous sentence from Slovenian BNSI Broadcast News speech database. 

Spontaneous speech is also a challenging task for language modelling. It is characterized by 
unconstrained speaking style, frequent grammatical errors, hesitations, starts-over, etc. 
Another problem is a limited amount of training data. The main source is audio transcription. 
Unfortunately, sources of written data do not exhibit characteristics of spoken language.  
The research work presented in this chapter is oriented on modelling of filled pauses and 
onomatopoeias for spontaneous speech recognition system. A previously proposed filled 
pauses acoustic modelling approach will be further improved with an advanced training 
procedure. In addition to normally accented speech, also a heavily accented spontaneous 
speech of a non-native speaker will be included in the experiment. Filled pauses are one of 
the most frequent categories of spontaneous speech effects, which are present in real-life 
spoken language resources and will be as such included in our experiments. Onomatopoeias 
as another category are less frequent, but still very challenging for modelling. We have 
grouped both categories in one, called filled pauses. Although filled pauses and 
onomatopoeias don’t carry any true semantic information, it is still necessary to include 
them in modelling for speech recognition. Each filled pause disrupts the sequence of words, 
which is estimated with the acoustic and language model and so influences the overall 
accuracy of speech recognition system. In addition, disfluencies in spontaneous speech are 
often indicators of turn taking in a dialog, and can be as such used for dialog management 
in voice driven telecommunication services. The methods proposed for modelling of filled 
pauses will be also evaluated on heavy accented speech, to show that modelling of filled 
pauses plays even more important role in such case of conversation. 
The level of accented speech usually depends on the speaker and its role in the discourse. In 
addition to these properties, the language also plays an important role. There are some 
languages, where a large number of various accents can be found. Slovenian is one of such 
languages, with approximately 50 different accents. This makes any accent modelling an 
additionally challenging task. 
The chapter is organized as follows: the current state-of-the-art is described in Section 2. 
Various filled pauses modelling approaches are presented in Section 3. The native and non-
native spoken language resources are introduced in Section 4. The experimental design used 
for evaluation is described in Section 5. Section 6 contains the results of the speech recognition 
experiments, while the conclusion and directives for future work are given in Section 7. 

2. Overview of current research work on topic of spontaneous speech 
recognition 
In the last few years is the research area of spontaneous speech recognition gathering on 
importance. One of the prerequisites for this development was the increase in CPU power, as 
are the algorithms for spontaneous speech recognition very demanding on processing power. 
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In the area of acoustic modelling of filled pauses, several authors presented successful 
approaches, how to address this topic. The first group of methods is based on Gaussian 
Mixture Modelling (GMM) (Wu & Yan, 2004; Wu & Yan, 2001; Rangarajan & Narayanan, 
2006). There are two main approaches possible. In the first approach, for each type of filled 
pauses a separate GMM model is build. The number of mixtures depends on the availability of 
spoken material per class. A separate class is used for modelling of normal spontaneous 
speech without any filled pauses. As the end results a system with multi GMM is being used 
for explicit (see Section 3) recognition of filled pauses in spontaneous speech. The second 
approach is based on only two GMM models. The first one represents filled pauses and the 
second one normal spontaneous speech. The main advantage of the second approach is that it 
is simpler to collect adequate amount of training material per class to train the GMM models. 
It also reduces the classification error between various types of onomatopoeias, as it can be 
sometimes extremely difficult to label separate sounds correctly. In general, the second 
approach yields better speech recognition results due to its higher modelling capability. 
The second major group is based on modelling with Hidden Markov Models (HMM) (Furui 
et al., 2005; Stouten et al., 2006; Seiichi & Satoshi, 2007), usually in an implicit way (see 
Section 3 for details). The performance of this group of approaches depends on the quality 
of transcriptions of spoken language resources. Each filled pause must be correctly labelled 
and transcribed to be able to model it with an HMM model. There are several methods 
possible how can a filled pause be represented with an HMM. One approach is to use 
separate HMM models for filled pauses. Another approach uses the same HMM acoustic 
models for filled pauses and spontaneous speech. The second approach is more difficult and 
complex as acoustic-phonetic properties of both types usually differ. Therefore complex 
modelling approaches are needed to reduce this discrepancy. It is also possible to combine 
the above presented methods in one system. 
The specifics of spontaneous speech presented above for acoustic modelling are also 
reflected on language modelling. Disfluencies (repetitions, hesitations, and sentence restarts) 
distinguish spontaneous from read speech to a great extant. N-grams base their word 
prediction on a local context of N-1 previous words. Early psycholinguistic experiments 
found that human subject asked to guess next word in the transcription a spontaneous 
speech required more guesses for words that had been proceeded by a hesitation (Goldman, 
1968). The experiment indicates the difficulties of transition from modelling read speech to 
modelling spontaneous speech. 
Disfluencies corrupt this context. First, the idea was to remove disfluencies from the context. 
Based on experiments it has been shown that simple clean-up is not the right way to recover 
the fluent order of meaningful words (Duchateau et al., 2004). If we eliminate disfluencies 
completely, we would lose some information.  
In (Duchateau et al., 2004) the authors allow the system to pick the most probable option 
when both a context with and without disfluencies are available. In case of repetitions the 
results were improved significantly by offering the system the choice between removing or 
not removing the disfluency from the prediction context. For hesitations and restarts this 
method results in a small deterioration of the recognition rate. The research was later 
extended by developing a specialized preprocessor which operated independently of the 
search and which searches for filled pauses on the basis of acoustic and prosodic features 
that are not accessible to the recognizer (Stouten et al., 2006). A filled pauses detector was 
built. Two strategies for incorporating the posterior probabilities at the output of this 
detector into the search engine were proposed. 
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Filled pauses and onomatopoeias don’t carry any true semantic information, but should be 
incorporated into the language model. The biggest difficulty is that statistical language 
models typically have very limited context, and by keeping filled pauses and 
onomatopoeias in context, information bearing word is lost. In (Stolcke et al., 1999) they are 
demarcated by events surrounding the words. They refer to them as Hidden Word-level 
Events (HWE). Models of HWE capture the specific prosodic characteristics of HWEs, such 
as intonation and duration patterns. The information from prosodic features was combined 
with statistical language models that describe the distribution of HWE in relation to words, 
part-of-speech, and other syntactical and lexical units.  
Adaptation to speaker-dependent disfluencies was studied to adopt a system for disfluency 
removal.  Disfluency removal makes sentences shorter, less ill-formed and thus facilitates the 
downstream processing by natural language understanding components such as machine 
translation or summarization (Honal & Schultz, 2005). The probability that a word is disfluent 
is composed of a weighted sum over the six models. The most prominent were the model of 
the length of the deletion region of a disfluency and the model of the position of a disfluency. 
Gradient descent method was used to automatically optimize the parameter weights. 
Speaker-produced disfluencies were identified in a conditional random field-based 
approach (Fitzgerald et al., 2009). The authors emphasize false start regions, which are often 
missed in current disfluency identification approaches as they lack lexical or structural 
similarity to the speech immediately following. They find that combining lexical, syntactical, 
and language model-related features with the output of the state-of-the-art disfluency 
identification system improves overall word-level identification of these and other errors. 
Although there has been significant work devoted to some spontaneous speech phenomena, 
we are still looking for an accurate and efficient language models for speech disfluencies. 

3. Spontaneous speech and modelling of filled pauses and onomatopoeias 
There are two different types of filled pauses acoustic modeling from the speech 
recognizer’s point of view. In the first case filled pauses are detected using an external 
module (e.g. GMM classification (Wu &Yan, 2004)), and speech recognizer than process only 
the part of speech without filled pauses (Figure 3). 
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Fig. 3. Explicit modelling of filled pauses in a speech recognition system. 
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In the second case are acoustic models for filled pauses part of the main speech recognition 
decoding process. This is called implicit modelling of filled pauses (Figure 4).  
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Fig. 4. Implicit modelling of filled pauses in a speech recognition system.  

3.1 Implicit modelling of filled pauses 
In the basic acoustic modelling approach (AM1), all filled pauses use only one acoustic 
model. This results in combining all filled pauses, regarding their acoustic-phonetic 
properties, into one common model. In such a way, acoustic training material is grouped 
together, which is important in case of infrequent filled pauses (see Table 4). The drawback 
is that the modelling of acoustic diversities isn’t taken into account. In our case, where the 
acoustic modelling was performed using the HMM, one three state left-right model was 
applied. The acoustic model for filled pauses was used as context-independent one and was 
as such also excluded from the phonetic decision tree based clustering of triphone acoustic 
models (see Section 5 for more details). 
The second implicit acoustic modelling approach (AM2) uses a separate acoustic model for 
each type of filled pauses. Advantage is that such model covers all acoustic-phonetic 
properties of one type of filled pauses, but the problem can be with the amount of training 
material available for infrequent types of filled pauses. As for the first example, the HMM 
models are context independent. 
The third kind of implicit modelling (AM3) is based on general acoustic models that are also 
used for speech modelling. Each filled pause is modelled with the speech acoustic models, 
according to its acoustic-phonetic properties. This solution usually assures enough training 
material for all types of filled pauses. The disadvantage lies in the fact that acoustic-phonetic 
properties of speech differ from those of filled pauses. The main difference is caused by 
duration of phonemes and levels of pitch. In case of this modelling approach, some of HMM 
models are context-dependent and therefore included in phonetic decision tree based 
clustering. The examples of all three implicit modelling approaches are presented in Table 1. 
There are three different filled pauses present in Table 1: eee, eem, and mhm. In case of AM1 
acoustic models all three filled pauses are modelled with the common context-independent 
acoustic model “filler”. When AM2 acoustic models are applied, each filled pause has its 
own context-independent acoustic model for filled pauses (e.g. filled pause eee is modelled 
with “eee” acoustic model). In the last case, when AM3 acoustic models are applied each 
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filled pause is modelled with context-dependent acoustic models for regular words – filled 
pause mhm is modelled with acoustic models “m h m” for regular words. 
 

Filled pause AM1 AM2 AM3 
Eee Filler eee e e 
Eem Filler eem e m 
Mhm Filler mhm m h m 

Table 1. Three different approaches of implicit acoustic modelling of filled pauses. 

3.2 Implicit modelling of filled pauses based on phonetic broad classes 
Considering all presented properties of described acoustic modelling approaches, a new 
method (AM4) how to model filled pauses was proposed in (Žgank et al., 2008). The basic 
idea is to use phonetic broad classes to model filled pauses. Phonetic broad classes are 
defined for each specific language, either by an expert phonetician or in a data-driven way. 
Phonemes with similar properties (e.g. open vowels) are grouped together in a particular 
phonetic broad class.  
 

 
Fig. 5. Slovenian phonetic broad class, defined in a data-driven way. 

Example of Slovenian phonetic broad classes, defined in a data-driven way (Žgank et al., 
2005a; Žgank et al., 2003) is shown on Figure 5. One of the smallest phonetic broad classes is 
Class-01 with only two members “i” and “i:”. On the opposite side are phonetic broad 
classes, which have several members, as for example Class-05 with 9 members.  
Instead of using a separate acoustic model as in case of AM2, a group of acoustic models is 
used to model filled pauses. Groups should be defined in a way that they incorporate 
acoustically similar filled pauses with enough training material. The analysis of the training 
set showed (see Table 4) that 4 different categories should be defined: vowels, voiced 
consonants, unvoiced consonants, and mixed group. The last one is used for those filled 
pauses that can’t be reliably categorized into the first three groups. The advantage of this 
method is in the fact that are the acoustic models of filled pauses still separated from the 
acoustic models of speech. Therefore, they can better model peculiarities of filled pauses that 
strongly differ from speech. An example, how filled pauses are modelled with the AM4 
method is shown in Table 2. 
 

Filled pause AM4 
Eee Vowels 
Eem Mixed 
Mmm voiced consonants 
Sss unvoiced consonants 

Table 2. Modelling of filled pauses using the method based on phonetic broad classes. 
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In AM4 approach, each filled pause belongs to one of the possible phonetic broad class 
categories (vowels, mixed, voiced consonants, unvoiced consonants). The filled pause eem, 
which pronunciation is combination from vowels (“e”) and consonants (“m”) is member of 
category mixed. On the other side, the pronunciation of filled pause eee contains only 
vowels; therefore it is a member of the first category vowels. The AM4 method already 
proved promising results. The current focus is to evaluate the method with improved 
training procedure and on heavy accented speech. 

4. Slovenian BNSI Broadcast News speech and text corpora 
The primary language resource used during these experiments was the Slovenian BNSI 
Broadcast News database (Žgank et al., 2005b). The BNSI database was designed in 
cooperation between University of Maribor, Slovenia and the Slovenian national broadcaster 
RTV Slovenia. The raw audio material was acquired from the archive of the broadcast 
company on DAT and DVD-R media. The captured audio signal was manually segmented, 
annotated and transcribed with tool Transcriber (Barras et al., 2001), according to 
recommendations on building Broadcast News spoken language resources. 
The speech corpus comprehends two different types of TV-news shows. The first type is 
evening news where general overview of daily events is given. The second types of show are 
late night news where major events of the day are analyzed. In this type of news show are 
frequent longer interviews (up to 10 minutes), with high proportion of spontaneous speech.  
The speech corpus consists of 42 news shows, which account for 36 hours of speech material. 
This material is further grouped into three sets: training, development and evaluation, 
respectively. The size of the training set is 30 hours, whereas the size of the development and 
evaluation set is 3 hours each. Altogether 1565 different speakers are present in the BNSI 
database. The majority, 1069 of them, are male, while 477 are female. The gender of remaining 
19 speakers was annotated as unknown. With usage of additional preprocessing steps on level 
of manual transcriptions the amount of training material which was prior excluded from the 
training set was reduced. Detailed analysis of speech recognition results showed statistically 
significant improved performance due to this additional step. 
It addition to the speech corpora, the text corpora (scenarios, transcriptions of speech 
corpus) was built. The text corpus is needed for developing the baseline set of language 
models. The Slovenian Vecer Newspaper text corpus was additionally incorporated in the 
language modelling. Properties of the BNSI Broadcast News database are given in Table 3. 
 

speech corpus:  
total length(h) 36 
number of speakers 1565 
number of words 268k 
test corpus:  
number of words 11M 
distinct words 175k 

Table 3. Slovenian BNSI Broadcast News speech and text database. 

The evaluation set of the BNSI Broadcast News speech database is composed from 4 
broadcasts in total length of approx. 3 hours. Typical broadcast news show comprises 
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various types of speech: read or spontaneous, in studio or over telephone environment, with 
or without background (Žgank et al., 2005b; Schwartz et al., 1997) (Figure 6).  
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1,65%
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Fig. 6. Ratio of various focus conditions in the BNSI speech database. 

The goal in this experiment was to efficiently evaluate the acoustic modelling of filled 
pauses. Therefore only the utterances with spontaneous speech in clean studio environment 
(F1-focus condition (Schwartz et al., 1997)) were included in the evaluation set. There were 
343 utterances with 3287 words in the evaluation set. The analysis showed that there were 
155 different filled pauses in this evaluation set, which represent 4.72% of it. The training set 
comprises 24 broadcasts. 
An analysis of all filled pauses that were found in the training set was also carried out. 
Those filled pauses with frequency higher than 5 are presented in Table 4. 
 

Filled pause Frequency 
eee 1833 
Sss 60 
Mmm 43 
Eem 40 
Zzz 21 
Uuu 16 
Ooo 14 
Vvv 12 
Ttt 12 
Aaa 12 
Nnn 10 
Iii 9 
Ppp 8 
Mhm 7 
Eeh 7 

Table 4. Statistics of filled pauses in the training set. 
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The most frequent filled pause in the training corpus is “eee”, with frequency 1833. The 
other filled pauses are far less frequent. The second one in Table 4 has frequency 60. There 
are altogether 15 filled pauses, which frequency is higher than 5. This distribution of 
frequencies between filled pauses support the idea of joining phonetically similar filled 
pauses in a same acoustic model, as the lack of appropriate training material for modelling 
of filled pauses can be foreseen. 
The secondary spoken language resource was used for modelling and evaluating heavy 
accented speech. For this experiment, the Slovenian SINOD speech database (Žgank et al., 
2006a) was used. The SINOD database was developed as a supplement to the BNSI Broadcast 
News database. It consists of two TV interviews, the first one with Russian non-native speaker 
(Table 5) and the other one with English non-native speaker of Slovenian. The same structure 
and transcription rules were applied as in the BNSI database. Here, only the part with the 
Russian non-native speaker of Slovenian was involved in the training and evaluation 
procedure. The secondary spoken language resource plays an important resource as it 
involves a high proportion of accented filled pauses, due to the non-native speaker involved. 
The presented spoken language resource has the drawback that only one speaker and its 
speaking style is involved in the heavy accented speech experiments. But the fact is that such 
spoken language material is extremely difficult to collect, especially for languages with smaller 
number of speakers. To reduce this characteristic of non-native spoken language resource, 
adaptation procedures presented in Section 5 were additionally incorporated. 
 

speech corpus: SINOD
total length(mm:ss) 28:20
number of sentences 642
distinct words 1010
test corpus: 
test set length (mm:ss) 8:36

Table 5. Slovenian non-native database SINOD (Russian speaker). 

5. Experimental design 
The experimental design (Figure 7) is based on continuous density Hidden Markov Models 
for acoustic modelling and on n-gram statistical language models. 
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Fig. 7. Block diagram of experimental speech recognition system. 



Modelling of Filled Pauses and Onomatopoeias for Spontaneous Speech Recognition   

 

77 

The core module is a speech decoder, which needs three data sources for its operation: 
acoustic models, language model and lexicon.  

5.1 Acoustic modelling 
The frontend was based on mel-cepstral coefficients and energy (12 MFCC + 1 E, delta, 
delta-delta). The size of feature vector was 39. Also, the cepstral mean normalization was 
added to the feature extraction to improve the quality of speech recognition. The manually 
segmented speech material was used for training and speech recognition. This was 
necessary to exclude any influence of errors that could occur during an automatic 
segmentation procedure. The developed baseline acoustic models were gender independent. 
The training of baseline acoustic models was performed using the BNSI Broadcast News 
speech database. The procedure was based on common solutions (Žgank et al., 2006b). First 
the context independent acoustic models with mixture of Gaussian probability density 
function (PDF) were trained and used for force alignment of transcription files. In the 
second step, the context independent acoustic models were developed once again from 
scratch, using the refined transcriptions. The context-dependent acoustic models (triphones) 
were generated next. The number of free parameters in the triphone acoustic models, which 
should be estimated during training, was controlled with the phonetic decision tree based 
clustering. The decision trees were grown from the Slovenian phonetic broad classes that 
were generated using the data-driven approach based on phoneme confusion matrix (Žgank 
et al., 2005a; Žgank et al., 2003). Three final sets of baseline triphone acoustic models with 4, 
8 and 16 mixture Gaussian PDF per state were generated. As some additional training data 
was won from the pool of outliers in comparison with the system described in (Žgank et al., 
2008), additional training iterations were applied to context-dependent acoustic models. 
These transcriptions preprocessing steps showed significant improvement of log-likelihood 
rate per acoustic model according to an analysis. 
Our main task was the acoustic modelling of filled pauses. To exclude from the experiments 
influence of inter-speaker variations in pronouncing filled pauses, only the speaker 
independent acoustic models were applied for native test set.  
For the heavy accented speech with the non-native set using the SINOD speech database, 
the baseline BNSI acoustic models were first adapted to particular speaker using the 
Maximum Likelihood Linear Regression (MLLR) (Leggetter & Woodland, 1995) procedure. 
The MLLR was used in an iteratively way. During the first iteration, acoustic models were 
adapted on general transcription. Thereafter the forced realigning procedure was used to 
improve the general transcriptions for a particular speaker. During the second iteration, the 
improved transcriptions were used for MLLR speaker adaptation. In the last step of 
modelling heavy accented speech, all approaches for modelling filled pauses were applied 
to the set of speaker dependent acoustic models. 
The standard one-pass Viterbi decoder with pruning and limited number of active models 
was used for speech recognition experiments in the next section. We applied additional fine 
tuning of decoder parameters on combined development set in comparison to the system 
described in (Žgank et al., 2008), to further improve the performance of speech recognition 
system. 

5.2 Language modelling and vocabulary 
Language models were built using corpora of written language and transcribed speech. For 
LM training three different types of textual data were used: Vecer (corpus of newspaper 
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articles in period 2000-2002), iNews (TV show scripts in period 1998-2004) and BN-train 
(transcribed BNSI acoustic training set). The interpolation coefficients were estimated based 
on EM algorithm using a development set. The language model is based on bigrams. The 
vocabulary contained the 64K most frequent words in all three corpora. The lowest count of 
a vocabulary word was 36. The out-of-vocabulary rate on the evaluation set was 4.22%, 
which is significantly lower than for some other speech recognition systems built for highly 
inflectional Slovenian language (Žgank et al., 2001; Rotovnik et al., 2007). A possible reason 
for this is the usage of text corpora with speech transcriptions for language modelling. 
Two types of language models were built. In the first model (LM1), all filled pauses and 
onomatopoeic words were mapped into unique symbol, which was considered as non-
event, and can only occur in the context of a bigram and was given zero probability mass in 
model estimation. In the second model (LM2) filled pauses and onomatopoeic words were 
modelled as regular words. 
 

 LM1 LM2 
λ(BN-train) 0.2619 0.2665 
λ(INews) 0.2921 0.2941 
λ(Vecer) 0.4459 0.4392 
perplexity 410 414 

Table 6. Statistics of language models used for modelling filled pauses. 

Language models built on the Vecer newspaper text corpus has the highest interpolation 
weight (0.4459 and 0.4392) for both types of language models. The interpolation weights for 
two other language models (iNews and BN-train) are similar. The perplexities of language 
models, calculated on the evaluation set were 410 and 414, respectively. The higher value for 
LM2 is due to the unmapped filled pauses. 

6. Results 
The proposed method of acoustic modelling of filled pauses will be evaluated indirectly 
with word accuracy, using the speech recognition results. These speech recognition results 
will be also used to compare the modelling methods for normal and heavy accented speech. 
The word accuracy is defined as: 

 (%) 100H I DAcc
N
− −

= ⋅   (1) 

where H denotes the number of correctly recognized words, I the number of inserted words, 
D the number of deleted words, and N the number of all words in the evaluation set. First, 
three different versions of the baseline system without modelling of filled pauses were 
evaluated on normal speech, to check which system’s topology performs best (Table 7).  
 

 Acc(%) 
Baseline 4 PDF 50.90 
Baseline 8 PDF 55.82 
Baseline 16 PDF 62.15 

Table 7. Speech recognition results without modelling of filled pauses for three different 
topologies of acoustic models recognizing normal speech. 
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The simplest topology of acoustic models with 4 Gaussian PDF mixtures per state 
performed worst, with the 50.90% accuracy. When the number of mixtures was increased to 
8 per state, the accuracy improved to 55.82%. The last baseline speech recognition 
configuration with 16 Gaussian mixtures achieved the best result with word accuracy of 
62.15%. Thus the speech recognition performance was increased for 11.25% absolute. The 
relatively low performance of all three baseline systems is mainly due to the following facts: 
highly inflectional Slovenian language with high out-of-vocabulary rate, completely 
spontaneous type of conversations in the evaluation set and limitations of using speaker-
independent acoustic models for this very complex speech recognition task. The 
disadvantage of the topology with 16 Gaussian mixtures per state, which yield the best 
result, is its complexity with high number of free parameters, which must be estimated. This 
results in increased computation time. The increased complexity of training procedure, 
presented in Section 5, improved the performance for approximately 5% in overall if 
compared to system applied in (Žgank et al., 2008). 
In the next step of evaluation four different filled pauses modelling techniques (AM1-AM4) 
were tested. Appropriate language models (LM1, LM2) were used in combination with the 
correct type of acoustic models. The results are presented in Table 8. 
 

 Acc(%) 
AM1+LM1 62.73 
AM2+LM1 62.96 
AM2+LM2 62.98 
AM3+LM1 63.60 
AM3+LM2 64.37 
AM4+LM1 64.95 

Table 8. Speech recognition results without and with acoustic modelling of filled pauses. 
Small improvement of recognition performance was already denoted for basic modelling of 
filled pauses on normal speech. The combination of AM1 and LM1 models increased the 
accuracy to 62.73%. Similar improvement of accuracy was achieved with the AM2 acoustic 
models, when LM1 and LM2 language models were used – the accuracy was 62.96% and 
62.98% respectively. There was almost no influence of the language model type on the 
normally accented speech recognition performance. In case of AM3 acoustic models were 
filled pauses modelled in combined mode with normal speech. The evaluation of this 
approach showed word accuracy of 63.60% and 64.37% for each particular language model 
LM1 and LM2. In this case, the version of language model played an important role. 
The last evaluation step for normally accented speech was focused on AM4 acoustic models 
where the filled pauses were modelled with phonetic broad classes according to their 
acoustic-phonetic properties. This approach achieved the best overall result with word 
accuracy of 64.95%. The baseline system performance was improved for 2.80% absolutely. 
Due to the improved training procedure, the improvement was smaller as in case of system 
described in (Žgank et al., 2008), although it was still statistically significant. 
In the last step of evaluation, the heavy accented speech originating from the SINOD 
database was tested. The results for this case are presented in Table 9. 
In case of SINOD database only the AM4 approach of modelling filled pauses was tested, as 
it already proved to be the most efficient one. The baseline SINOD system achieved the 
word accuracy of 65.74%. The improvement in comparison to the baseline system is result of 
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 Acc(%) 
SINOD baseline 65.74 
SINOD AM4 67.31 

Table 9. Speech recognition results for heavy accented speech without and with filled pauses 
modelling. 

applying MLLR procedure, although the increase of word accuracy is smaller than usual for 
speaker adaptation. The possible cause for this is the non-native origin of test speaker. In 
case, when the filled pauses were modelled using the proposed phonetic broad classes 
approach, the word accuracy increased to 67.31%. Thus the overall improvement for heavy 
accented non-native speech was 1.57%. The improvement is smaller as in case of native 
speech, but it still show, how important it is to model the filled pauses. 

7. Conclusion 
The new speech recognition system achieved statistically significant improvement of word 
accuracy in comparison with the previous version. The obtained speech recognition results 
clearly showed how important it is to adequately model filled pauses and onomatopoeias in 
spontaneous speech on level of acoustic and language models. The detailed analysis of 
speech recognition performance on filled pauses in non-native speech showed that there is 
still some room for improvements due to the complexity of this task. 
The future work will be focused on various data-driven approaches, which will take into 
account the difference in pronouncing filled pauses and onomatopoeias in native and non-
native speech. The detailed analysis of speech recognition results namely showed that this 
could further improve the performance of our system. 
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1. Introduction 
Communication using speech is inherently natural, with this ability of communication 
unconsciously acquired in a step-by-step manner throughout life. In order to explore the 
benefits of speech communication in devices, there have been many research works 
performed over the past several decades. As a result, automatic speech recognition (ASR) 
systems have been deployed in a range of applications, including automatic reservation 
systems, dictation systems, navigation systems, etc. 
Due to increasing globalization, the need for effective interlingual communication has also 
been growing. However, because of the fact that most people tend to speak foreign languages 
with variant or influent pronunciations, this has led to an increasing demand for the 
development of non-native ASR systems (Goronzy et al., 2001). In other words, a conventional 
ASR system is optimized with native speech; however, non-native speech has different 
characteristics from native speech. That is, non-native speech tends to reflect the 
pronunciations or syntactic characteristics of the mother tongue of the non-native speakers, as 
well as the wide range of fluencies among non-native speakers. Therefore, the performance of 
an ASR system evaluated using non-native speech tends to severely degrade when compared 
to that of native speech due to the mismatch between the native training data and the non-
native test data (Compernolle, 2001). A simple way to improve the performance of an ASR 
system for non-native speech would be to train the ASR system using a non-native speech 
database, though in reality the number of non-native speech samples available for this task is 
not currently sufficient to train an ASR system. Thus, techniques for improving non-native 
ASR performance using only small amount of non-native speech are required. 
There have been three major approaches for handling non-native speech for ASR: acoustic 
modeling, language modeling, and pronunciation modeling approaches. First, acoustic 
modeling approaches find pronunciation differences and transform and/or adapt acoustic 
models to include the effects of non-native speech (Gruhn et al., 2004; Morgan, 2004; Steidl 
et al., 2004). Second, language modeling approaches deal with the grammatical effects or 
speaking style of non-native speech (Bellegarda, 2001). Third, pronunciation modeling 
approaches derive pronunciation variant rules from non-native speech and apply the 
derived rules to pronunciation models for non-native speech (Amdal et al., 2000; Fosler-
Lussier, 1999; Goronzy et al., 2004; Gruhn et al., 2004; Raux, 2004; Strik et al., 1999). 



 Advances in Speech Recognition 

 

84 

The remainder of this chapter is organized as follows. In Section 2, an overview of  
non-native speech recognition is investigated. After that, acoustic modeling, language 
modeling, and pronunciation modeling approaches are explained in Sections 3, 4, and 5, 
respectively. Then, a new pronunciation modeling method is proposed in Section 6 as a 
means of improving the performance of non-native speech recognition. In addition, the 
performance of a non-native ASR system adopting the proposed method is evaluated and 
compared to that employing conventional pronunciation model adaptation methods. 
Finally, we conclude our findings in Section 7. 

2. Overview of non-native speech recognition 
Recently, speech recognition technology has become more familiar in our lives (Goronzy et 
al., 2001), as numerous applications are increasingly adopting speech recognition systems. 
For example, voice dialing is possible based on either a user stating a name or a number, 
dictation systems are relatively common, and there are a number of voice-enabled automatic 
response systems available. However, when these ASR systems are used by non-native 
speakers, the performance of the system can rapidly degrade because of the mismatches 
between the native training data and the non-native test data (Compernolle, 2001). 
Previously, several works have investigated the characteristics of non-native speech and the 
effect of non-native speech on ASR performance, some of which tried to explore the 
differences in characteristics between native and non-native speakers. For examples, the 
authors of (Sidaras et al., 2009) demonstrated that the duration and the first and second 
formant frequencies of English vowels spoken by Spanish speakers had different 
characteristics from those of native English speakers. Moreover, it was found that Spanish-
accented English was perceived better when the listeners were trained with this form of 
English. Similarly, it was noticed that the tongue location of the English vowels by non-
native speakers had different characteristics from that of native speakers (Wade et al., 2007). 
In addition, according to the work in (Alotaibi et al., 2010), unique consonants existed in 
some languages, such as four emphatic consonants of Arabic, and these unfamiliar 
consonants were found to be hard to perceive by non-native speakers. It was then found 
that when non-native speakers pronounced words containing these unfamiliar consonants, 
degradation of ASR performance could occur. 
Other researchers have attempted to compare the ASR performance of both native and non-
native speech. In (Wang et al., 2003), it was shown that the word error rate (WER) of an 
English ASR system by German speakers was 49.3% whereas that of native English speakers 
was 16.2%. Moreover, in (Steidl et al., 2004), an ASR system trained by German speakers 
provided WERs of 18.5% and 34.0% when tested by native German speakers and English 
speakers, respectively. However, when the same ASR system was trained by English 
speakers but tested by German speakers, the WER increased from 35.0% to 65.6%. Based on 
these previous works, it is evident that adjusting for different pronunciation characteristics 
between native and non-native speakers is crucial for improving the ASR performance of 
non-native speech. 
In order to improve the ASR performance for non-native speech, we first need to prepare a 
non-native speech database to train the ASR system or adjust the system for non-native 
speech; then, each component of the ASR system can be adjusted for non-native speech. 
Depending on which ASR component is adapted or modified for non-native speech, we can 
classify the techniques developed for non-native speech as shown in Fig. 1. In brief, a typical 
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ASR system is composed of a front-end for extracting acoustic feature, acoustic models for 
representing recognition units with the acoustic features, a language model for covering 
language-specific grammar or syntax, and a pronunciation model for handling the 
phonology, phonotactics, or phonetics of the target language. Therefore, different techniques 
can deal with non-native ASR issues from acoustic modeling, language modeling, or 
pronunciation modeling points of view. In addition, it is also important to consider how to 
transform or compensate for acoustic features extracted from non-native speech into native 
speech. It is suggested here that to further improve ASR performance, a hybrid modeling 
approach can be used, one that combines some or all of the approaches mentioned above. 
 

Test speech data
Front-end Feature modeling

Acoustic model Acoustic modeling
Non native

Pattern matchingRecognized text Language model Language modeling

Pronunciation model Pronunciation modeling

Non-native
speech

database

Hybrid modeling
 

Fig. 1. Classification of techniques applied to non-native ASR. 

1. Non-native speech database design 
In order to develop a non-native ASR system and investigate the characteristics of non-
native speech, we first require non-native speech databases; Raab et al. (Raab et al., 
2007) have previously reviewed such non-native speech databases. 

2. Acoustic modeling approach 
Acoustic modeling approaches are used to adjust acoustic models and thereby improve 
the recognition performance of non-native speech (Gruhn et al., 2004; Morgan, 2004; 
Steidl et al., 2004). A simple way of adjusting acoustic models is to train them using a 
large amount of non-native speech. However, in practice it is rather difficult to collect a 
sufficient amount of non-native speech; therefore, acoustic models are usually adapted 
via a conventional acoustic model adaptation method, such as maximum likelihood 
linear regression (MLLR) and/or maximum a posteriori (MAP) methods (Yang et al., 
2004). As an alternative, the acoustic models adjusted for non-native speech can also be 
obtained by interpolating the acoustic models for native speech and the acoustic models 
for the mother tongue (Steidl et al., 2004; Tan et al., 2007). In other words, the acoustic 
models trained with two different languages are combined to obtain the acoustic 
models for non-native speech. However, the most popular way of obtaining the 
adjusted acoustic models is to apply an adaptation technique with only small amount of 
adaptation data for non-native speech (Liu et al., 2008; Oh et al., 2007; 2009). 

3. Language modeling approach 
Language modeling approaches deal with the grammatical effects or speaking styles of 
non-native speech, since non-native speakers tend to make a different sentence 
structure from native speakers (Bellegarda, 2001). However, there are relatively few 
research works in this area, compared to either the acoustic modeling approaches or the 
pronunciation modeling approaches (Huang et al., 2008; Raux et al., 2004; Steidl et al., 
2004). 
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4. Pronunciation modeling approach 
Pronunciation modeling approaches first derive pronunciation variants from non-native 
speakers and then apply them to the pronunciation models for non-native speech. 
Usually, the variant pronunciations for each word are added to the pronunciation models, 
which is similar to a multiple pronunciation dictionary approach (Amdal et al., 2000; 
Fosler-Lussier, 1999; Goronzy et al., 2004; Gruhn et al., 2004; Raux, 2004; Strik et al., 1999). 
The pronunciation variants from non-native speakers can be derived by either 
knowledge-based or data-driven approaches (Strik et al., 1999). Note that knowledge-
based approaches are based on linguistics or phonetic knowledge (Schaden, 2003; 
Tajchman et al., 1995; Wiseman et al., 1998), whereas data-driven approaches 
automatically derive pronunciation variants from non-native speech data and can be 
further classified into either a direct method (Amdal et al., 2000; Fosler-Lussier, 1999; 
Strik et al., 1999) or an indirect method (Amdal et al., 2000; Fosler-Lussier, 1999; 
Goronzy et al., 2004; Svendsen, 2004; Wolff et al., 2001). 
If many pronunciation variants are derived, the adapted pronunciation model becomes 
enlarged, resulting in performance degradation of the ASR system due to the fact that 
confusability in the pronunciation model is increased. Thus, several confusability 
reduction methods have also been proposed (Amdal et al., 2000; Hernandez-Abrego et 
al., 2004; Tsai et al., 2002). 

5. Hybrid modeling approach 
Hybrid modeling approaches combine several modeling approaches, as described 
above, to further improve the performance of non-native ASR. In other words, acoustic 
or pronunciation modeling approaches can be combined in an MLLR and/or MAP 
adaptation framework (Goronzy et al., 2004; He et al., 2003; Liu et al., 2008; Oh et al., 
2007; 2010; Tan et al., 2007). In particular, Bouselmi et al. (Bouselmi et al., 2007) 
proposed several combination schemes for pronunciation and MLLR/MAP acoustic 
model adaptations. On the other hand, pronunciation variant rules were decomposed 
into either pronunciation or acoustic variants (Oh et al., 2008). After that, pronunciation 
and acoustic model adaptations were applied to pronunciation and acoustic variants, 
respectively. 

6. Feature-domain approach 
The feature-domain approach applies a feature adaptation method to compensate for 
mismatches between training and test conditions; the acoustic models are trained using 
native speech, but are tested using non-native speech. For example, Oh and Kim (Oh et 
al., 2010) applied a feature-space MLLR (fMLLR) adaptation with smoothing techniques 
to non-native ASR. 

The next three sections will provide more detailed descriptions of the acoustic, language, 
and pronunciation modeling approaches. 

3. Acoustic modeling approach 
Because of the limited non-native speech database mentioned in Section 2, interpolating or 
adapting existing acoustic models using a small amount of non-native speech data is 
preferred, rather than attempting to train new acoustic models using large amounts of non-
native speech data. Thus, in this section we introduce a number of acoustic modeling 
approaches in attempts to improve the performance of non-native ASR by using only a 
limited amount of non-native speech data. 
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As an effort to adapt acoustic models, several interpolation methods have been proposed, 
where two sets of acoustic models, the acoustic models trained with the target language and 
the acoustic models trained with the mother tongue of native speakers, are combined 
(Matsunaga et al., 2003; Steidl et al., 2004; Tan et al., 2007). Contrary to interpolating acoustic 
models, phone acoustic models of the target language were modified by adding an 
alternative path to the corresponding mother tongue phone acoustic models of non-native 
speakers (Bartkova et al., 2006; Bouselmi et al., 2006). Finally, the acoustic models were 
adapted by using non-native adaptation data via either an algorithm dedicated to non-
native ASR or a conventional speaker adaptation method (Liu et al., 2008; Oh et al., 2007; 
2009). 

3.1 Retraining method 
A retraining method generates non-native acoustic models by using a large amount of non-
native speech data or retrains native acoustic models by using a moderately large sample of 
non-native speech data. These types of retraining methods are very simple but have several 
drawbacks, such as the following. 
First, retraining methods require a large amount of non-native speech and their 
corresponding transcription data; however, these data are usually limited in quantity. 
Second, the transcriptions of a non-native speech database cannot be automatically 
generated since some non-native speech data contain various unpredictable pronunciations 
and structural errors. Third, the performance of ASR systems employing the retrained  
non-native acoustic models tends to drastically degrade for native speech (Oh et al., 2007). 
For these reasons, several alternative methods have been proposed, which either interpolate 
the native and non-native acoustic models or adapt the native acoustic models based on a 
relatively small non-native database. 

3.2 Interpolation method 
In this subsection, we explain several interpolation methods, classified as either: 1) 
interpolation of native acoustic models of target language using non-native speech data 
(Steidl et al., 2004), and 2) interpolation of native acoustic models of target language based 
on native acoustic models of the mother tongue of non-native speakers (Tan et al., 2007). 

3.2.1 Use of target language acoustic models 
In this category, the acoustic model interpolation method is based on two assumptions. 
First, each non-native pronunciation has at least one similar native pronunciation in the 
target language, stemming from the fact that most languages have very similar phone 
inventories. Second, the native acoustic models of the target language are sufficient for 
adapting acoustic models for non-native speech. 
The procedure of the acoustic model interpolation method is as follows: 
Step 1. Generation of transcriptions based on native acoustic models 

Each non-native utterance in a development set is recognized by the native acoustic 
models of the target language, which then automatically generates the transcriptions. 
According to the recognition results, each pronunciation in the lexicon is replaced by 
the recognized monophone such that highly specialized pronunciations in the lexicon 
are adapted. 
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Step 2. Selection of optimal interpolation partners 
To select the optimal K-1 partners for acoustic model interpolation, each candidate 
partner is first interpolated based on the state of a hidden Markov model (HMM) of the 
target language, as shown in Eq. (1). Next, an N-best list of candidate partners is 
evaluated, and the first K-1 candidate partners are then selected from the N-best list. 

Step 3. Interpolation of selected acoustic models 
Since semi-continuous HMMs share the same set of output density probabilities, only 
the interpolation weights and the corresponding transition probabilities need to be 
adjusted in order to interpolate native acoustic models of the target language for non-
native acoustic models. When there are K-1 interpolation partners for the state si of an 
HMM, the mixture weight ci,m of a state si of the HMM is adjusted as ,ˆi mc , based on the 
following equation: 

 
1, 1 , ,

ˆ  ...
Ki m i m K i mm c c cρ ρ∀ = ⋅ + + ⋅   (1) 

where 
1is  represents is , and 

1
, ,

Ki is s  indicate the states of the corresponding 
interpolation partners of the state is .→

1ic  represents the mixture weight of is , and 

1
, ,

Ki ic c  indicate the mixture weights of the states of the corresponding interpolation 
partners  of the state is . In addition, ρ1, …, ρK are the interpolation weights. 
The interpolation weights indicate the probability from the original state si to the states 
of the corresponding interpolation partner and can be estimated using an expectation- 
maximization (EM) algorithm. After the interpolation weights are estimated, the 
corresponding transition probabilities can be determined in a similar manner. 

3.2.2 Combined use of target language and mother tongue acoustic models 
Tan and Besacier (Tan et al., 2007) proposed three interpolation methods based on the use of 
both the target language acoustic models and the mother tongue acoustic models of non-
native speakers, which include 1) manual interpolation, 2) weighted least square based 
interpolation, and 3) eigenvoice based interpolation. The three acoustic model interpolation 
methods consist of two identical steps for preprocessing and one different step for the 
acoustic model interpolation. 
Step 1. Investigation of phoneme mapping information 

The mapping information on the phoneme substitutions for non-native speech is 
investigated using both the knowledge-based and the data-driven approaches. 
• Knowledge-based approach 

Phoneme substitutions from the mother tongue of non-native speakers to the target 
language are first examined based on the international phonetic alphabet (IPA) 
tables (International Phonetic Association, 1999). 

• Data-driven approach 
For a phoneme whose substitution information is not known from the IPA tables, a 
data-driven approach is applied using a phoneme confusion matrix. In other 
words, a forced alignment is first performed based on the target language acoustic 
models for each non-native utterance in a development set. Then, phoneme 
recognition is also performed using the mother tongue acoustic models for each 
non-native utterance. Next, the two phoneme sequences are aligned using time 
information in order to generate the phoneme confusion matrix. From the 
generated confusion matrix, the mapped phoneme having the highest probability is 
selected as the phoneme substitution for each phoneme. 
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Step 2. Regeneration of mother tongue acoustic models of non-native speakers 
Before interpolating acoustic models, the mother tongue acoustic models of non-native 
speakers are reconstructed from the target language acoustic models in order to match 
the configuration of the target language acoustic models. For this task, the 
pronunciation dictionary of the mother tongue of non-native speakers is first modified 
using the investigated mapping information. The mother tongue acoustic models of 
non-native speakers are then reconstructed from the target language acoustic models by 
performing MLLR and MAP adaptations based on the speech corpus of the mother 
tongue of non-native speakers and the modified pronunciation dictionary. 
• In the cases of manual and weighted least square based interpolations 

The mother tongue acoustic models of non-native speakers are reconstructed from 
the target language acoustic models by performing MLLR and MAP adaptations 
based on all the speech data of the mother tongue of non-native speakers and the 
modified pronunciation dictionary. In other words, speaker-independent acoustic 
models of the mother tongue are obtained as the mother tongue acoustic models. 

• In the case of eigenvoice based interpolation 
For each native speaker of a speech training corpus, the target language acoustic 
models are reconstructed by performing MLLR and MAP adaptations using a 
subset of the speech corpus of the target language for the corresponding speaker 
and the original pronunciation dictionary. In other words, several sets of speaker-
dependent acoustic models of the target language are obtained. 
Next, for each non-native speaker in a development speech corpus, the mother 
tongue acoustic models of non-native speakers are reconstructed from the target 
language acoustic models by performing MLLR and MAP adaptations using a 
subset of the speech corpus of the mother tongue for the corresponding speaker 
and the modified pronunciation dictionary. As a result, several sets of speaker-
dependent acoustic models for the mother tongue are obtained. 

Step 3.a. Manual interpolation of acoustic models 
For the non-native acoustic models (pinterpolated) of a phoneme, the target language 
acoustic models (ptarget_language) for the phoneme are then interpolated based on the 
mother tongue acoustic models (pmother_tongue) of the corresponding mapping phoneme, 
using the equation of 

 _ _(1 )interpolated target language mother tonguep w p w p= ⋅ + − ⋅   (2) 

where w (0 ≤ w ≤ 1) indicates an interpolation weight. In this method, the interpolation 
weight (w) is manually determined by experiments; this method is appropriate in the 
case that no non-native speech is available. 

Step 3.b. Weighted least square based interpolation of acoustic models 
If the non-native adaptation data are available, the interpolation weight can be 
predicted using the weighted least square. In other words, Eq. (2) can be rewritten as 

 1
_ _

2

(  ) ( )target language mother tongue interpolated

w
A x p p p b

w
⎛ ⎞

⋅ = ⋅ = =⎜ ⎟
⎝ ⎠

  (3) 

where b is calculated as the speaker means obtained by a forced-alignment with the 
non-native adaptation data on the target language acoustic models. 
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Given A and b as in Eq. (3), the interpolation weight vector x can then be solved by 
using the weighted least square as 

 1 1T TA A x A b− −⋅ Σ ⋅ ⋅ = ⋅Σ ⋅  (4) 

where the speaker variance Σ is a weight since each mean does not have the same 
weight. 

Step 3.c. Eigenvoice based interpolation of acoustic models 
From all the generated sets of speaker-dependent acoustic models for the target 
language and the mother tongue, the means act as supervectors for creating a non-
native space for eigenvoice based interpolation. Thus, a subset of these eigenvectors is 
selected for the interpolation. 

3.3 Adaptation method 
In order to compensate for mismatches between the native training data and the non-native 
test data of the target language, the native acoustic models of the target language are 
adapted using non-native speech such that the ASR performance for non-native speech can 
be improved. As a simple adaptation, traditional acoustic model adaptation methods, which 
are widely used for speaker adaptations or noise-robust ASR, can be applied. However, 
traditional MLLR and/or MAP adaptation methods adapt only speaker or environmental 
variability, not pronunciation variability from non-native speakers. Hence, this subsection 
focuses on acoustic model adaptation methods for handling pronunciation variability from 
non-native speakers (Oh et al., 2007; 2009). 

3.3.1 Modified decision-tree based state-clustering method 
The modified decision-tree based state-clustering method is performed in a decision-tree 
based state-tying step during construction of the acoustic models. The main procedure of 
the modified decision-tree based state-clustering method is as follows: 
Step 1. Analysis of pronunciation variability of non-native speakers 

Since the modified decision-tree based state-clustering method is based on the 
pronunciation variability of non-native speech, this pronunciation variability is first 
investigated in an indirect data-driven method that will be further explained in Section 
6. In brief, for each utterance in a non-native development set, phoneme recognition is 
performed and then an N-best list of phoneme sequences is obtained. Next, the 
phoneme rule patterns that are derived from the recognized N-best lists are applied to a 
decision tree, C4.5 (Quinlan, 1993). As a result, the pronunciation variant rules are 
generated. 

Step 2. Decomposition of pronunciation variability of non-native speakers 
Among the derived pronunciation variant rules, acoustic variants are selected in the case 
that the default class (phonemedefault) of the pronunciation variant rule has a different 
phoneme from a target phoneme (phonemetarget). Other pronunciation variant rules are 
then determined as pronunciation variants. Note that only the acoustic variants are 
applied to the modified decision-tree based state-clustering method.  
The acoustic and pronunciation variants can be briefly explained as follows: 
• Acoustic variants, phonemevariantacoustic 

Acoustic variants are named since the pronunciation variant rules are applied in 
the acoustic modeling. In addition, it is assumed that the variants occurred due to 
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the different pronunciation characteristics between the target language and the 
non-native speaker’s mother tongue. These acoustic variants can be placed in any 
context and thus they are also referred to as context-independent variants. For this 
reason, acoustic modeling is more appropriate than pronunciation modeling since 
pronunciation modeling adds variant pronunciations for each corresponding 
context and thereby increases the confusability. 

• Pronunciation variants, phonemevariantpronunciation  
Pronunciation variants are named since the pronunciation variant rules are applied in 
the pronunciation modeling. In addition, it is assumed that the variants are due to the 
co-articulation effect. In the model, these pronunciation variants would be placed in a 
specific context with the left two phonemes and the right two phonemes, and thus 
they are also referred to as context-dependent variants. Consequently, pronunciation 
modeling can more properly handle the pronunciation variants by adding the 
corresponding variant pronunciations of each word. 

Step 3. Adaptation in the state-tying step of acoustic model construction 
The acoustic model adaptation is performed in the decision-tree based state-tying step 
of acoustic model construction using the acoustic variants. For a phoneme having no 
acoustic variants, a traditional state-tying step is applied, in which a decision tree for 
each target phoneme (phonemetarget) is utilized based on the states of the triphone 
acoustic models where the central phone of the triphone has the phonemetarget. However, 
for a phoneme having acoustic variants, a decision tree for each phonemetarget is utilized 
by using the states of the triphone acoustic models in which the central phone of the 
triphone has either phonemetarget or phonemevariantacoustic. 

3.3.2 Modified MLLR adaptation method 
A traditional MLLR adaptation method is commonly used for speaker or environment 
variants; however, the MLLR adaptation should be modified for non-native ASR (Oh et al., 
2009). In other words, an MLLR/MAP adaptation for triphone models having pronunciation 
variations is performed to handle the pronunciation variability of non-native speakers. The 
main procedure of the modified MLLR adaptation method is as follows: 
Step 1. Acquisition of pronunciation variations of non-native speech 

The pronunciation variations of non-native speech are generated in an indirect data-
driven approach, as will be explained in Section 6. Then, the only acoustic variants are 
selected by investigating the pronunciation variant rules in which the default class has a 
different phoneme as the target phoneme, as described in Section 3.3.1. 

Step 2. Generation of regression classes 
In this step, two separate sets of regression classes are generated; overall regression classes 
for the characteristics of non-native speakers or environments, and pronunciation 
variation regression classes for the pronunciation variations of non-native speech. 
• For the overall regression classes 

All the acoustic models of the target language are pooled on the root node of a 
regression class tree and the overall regression classes are then generated by 
splitting the regression class tree to adapt the acoustic models of the target 
language for the characteristics of non-native speakers or environments. 

• For the pronunciation variation regression classes 
Pronunciation variation regression classes are generated for each pronunciation 
having acoustic variants. That is, the acoustic models for both the target 
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pronunciation and the corresponding variant pronunciations are pooled on the root 
node of a regression class tree, and the pronunciation variation regression classes 
for the target pronunciation are then generated by splitting the regression class tree 
such that the acoustic models of the target language are adapted for the 
pronunciation variations of non-native speech. 

In order to generate a regression class, the acoustic models pooled on the root node of a 
regression class tree are first split based on the criterion of the centroid splitting 
algorithm, using the Euclidean distance measure (Young et al., 2002). Then, each 
regression class is identified by using the acoustic models clustered on the leaf node of 
the regression class tree. 

Step 3. Adaptation of acoustic models using MLLR and MAP adaptation methods 
It is known that the combination of MLLR and MAP adaptations can further improve 
the ASR performance of non-native speech, as opposed to using either only the MLLR 
or MAP adaptations (Goronzy et al., 2004; He et al., 2003; Tan et al., 2007). Therefore, a 
second-pass adaptation method using both the MLLR and MAP adaptations is 
performed in order to adapt the acoustic models of the target language (Oh et al., 2009). 
In other words, for each regression class, the corresponding MLLR transformation 
matrix is first estimated via an EM algorithm based on the non-native adaptation data. 
Then, the adapted acoustic models are generated by applying a MAP adaptation with 
the non-native adaptation data and the estimated MLLR transformation matrix. 

Step 4. Reconfiguration of the adapted acoustic models 
Since one set of adapted acoustic models from the overall regression classes and several 
different sets of adapted acoustic models from the pronunciation variation regression 
classes are generated in Step 3) of this subsection, a single set of adapted acoustic 
models should be selected. To this end, for each pronunciation variation, the 
corresponding models in the adapted acoustic models from the overall regression 
classes are replaced by the acoustic models adapted by the corresponding 
pronunciation variation regression class. Accordingly, the reconfigured acoustic models 
can cover the characteristics of non-native speakers or environments as well as the 
pronunciation variations of non-native speech. 

4. Language modeling approach 
Language modeling approaches are associated with the different speaking styles or the 
grammatical effects of non-native speech. When compared to either the acoustic or 
pronunciation modeling approaches, there have been few research works reported on 
language modeling. Nevertheless, in this section, we explain the language modeling method 
for continuous word speech recognition and for pronunciation grammar (Huang et al., 2008; 
Raux et al., 2004; Steidl et al., 2004). 

4.1 Interpolation with non-native language model 
Non-native speakers tend to make different sentence structures from native speakers due to 
the syntactic characteristics of the mother tongue of non-native speakers. For handling such 
syntactic differences of non-native speech, Steidl et al. (Steidl et al., 2004) employed an 
adapted language model by combining the original native language model and the non-
native language model. The non-native language model was generated by using the 
transliteration of a non-native speech database. In addition, Raux and Eskenazi (Raux et al., 
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2004) generated a non-native language model for a language learning system having both 
native and non-native speech data. It was shown from subsequent experiments that both 
methods improved the recognition performance when compared to the native language 
model. 

4.2 Unsupervised pronunciation grammar growing 
Huang et al. (Huang et al., 2008) proposed an unsupervised pronunciation grammar 
growing method in order to obtain the grammar of the pronunciation variations of non-
native speakers and to generate the pronunciation models for non-native speech. The 
method consisted of two steps: the construction of a pronunciation variation graph and the 
generation of the non-native grammar from the pronunciation variation graph. 
The main procedure of the unsupervised pronunciation grammar growing method is as 
follows: 
Step 1. Construction of a pronunciation variation graph 

A pronunciation variation graph for a word starts with all the possible pronunciation 
variations including insertions, deletions, and substitutions. Thus, a huge search space 
is required for the pronunciation variation graph of a word. In the graph, a node 
indicates the possible pronunciation and an edge represents the possible transition 
between pronunciations. In order to reduce the search space of the graph, the possible 
pronunciations and transitions for a substitution are first constrained within the broad 
class information defined by linguistic experts. Next, the possible paths remaining for 
the pronunciation variations are evaluated by calculating the posterior probabilities of 
each phone pair (phstart, phend) using the equation, 

 11 1 1 1( ) exp[ ( ) ( )]
2(2 )
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where xi, N, and d indicate the i-th observation feature vector corresponding to phstart in 
a training speech corpus, the number of observation feature vectors corresponding to 
phstart in the training speech corpus, and the dimension of the observation feature vector, 
respectively. In addition, λphend, μphend, and Σphend represent the acoustic model, the mean 
vector, and the covariance matrix for the phone phend. In the experiment, paths that are 
greater than a predefined threshold remain in the pronunciation variation graph. 
Next, the possible left-context and right-context dependent pronunciations are 
generated using both a target language pronunciation dictionary and a mother tongue 
pronunciation dictionary. Then, only the possible paths having context dependent 
pronunciations are extracted. 

Step 2. Generation of non-native grammar 
By using the constructed pronunciation variation graph, speech recognition is first 
performed and the pronunciation variation grammar is then optimized by removing the 
pronunciations that are incorrectly recognized or have unusual variants based on the 
recognition confidence and support score. Here, the word-level generalized posterior 
probability and the occurrence frequency of the pronunciation variation are used as the 
recognition confidence and the support score, respectively. The finally optimized 
pronunciation variation grammar is subsequently used to generate the multiple 
pronunciation dictionary for non-native speakers. 
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5. Pronunciation modeling approach 
There are two approaches pertaining to pronunciation model adaptations for non-native 
speech: a knowledge-based approach and a data-driven approach (Strik et al., 1999). A 
knowledge-based approach uses pronunciation rules from phonological knowledge and 
develops a pronunciation dictionary based on the pronunciation rules. In the case of a data-
driven approach, phonological rules for pronunciation adaptation are automatically 
generated from non-native speech and transcription data; as such, a subdivision into direct 
and indirect data-driven methods can be applied. 

5.1 Knowledge-based method 
In a knowledge-based method, phonologically obtained pronunciation rules are used to 
transform a baseform into a pronunciation variant. For example, the phonological rule 

 / / / / / / / /vowel b d vowel b D+ + → + +   (6) 

is used to transform a consonant /d/ followed by a consonant /b/ into a fortis consonant 
/D/ in Korean. The phonological rules are derived based on linguistical and phonological 
knowledge according to known pronunciation variations of speech. Then, the phonological 
rules are applied to baseforms in a pronunciation dictionary. 
As representatives of knowledge-based approaches, pronunciation rules from phonological 
knowledge were previously generated to develop a pronunciation dictionary based on 
pronunciation rules (Tajchman et al., 1995; Wiseman et al., 1998). Also, Schaden (Schaden, 
2003) transformed canonical phonetic dictionaries of the target language into adapted 
dictionaries in order to model prototypical foreign-accented pronunciation variants. 

5.2 Data-driven method 
The primary advantage of the knowledge-based approach is that it can be applied to all 
corpora and especially to new words that are not introduced in the ASR system. However, a 
notable drawback of the approach is in that the rules are often very general, resulting in too 
many variants in the pronunciation dictionary, thereby increasing the confusability of 
pronunciation variations. Moreover, it should be noted that even if this approach is applied 
to an ASR system, it is unlikely that all aspects of non-native speech could be covered. 
In order to compensate for such drawbacks of the knowledge-based approach, 
pronunciation variations are derived from speech signals in data-driven methods. Data-
driven methods can be further classified into direct data-driven or indirect data-driven 
approaches. The direct data-driven approach derives pronunciation variants depending on 
pronunciation training databases, as proposed in (Amdal et al., 2000; Fosler-Lussier, 1999; 
Strik et al., 1999). When an ASR system employs the adapted pronunciation dictionary using 
a direct data-driven approach, some unseen words might appear during ASR testing. Thus, 
such a mismatch condition in the pronunciation model between ASR training and testing 
could degrade the performance of an ASR system. 
On the other hand, an indirect data-driven method investigates pronunciation variability from 
the speech training data, derives the variant rules, and applies the variant rules in the ASR 
pronunciation dictionary to compensate for the variability (Amdal et al., 2000; Fosler-Lussier, 
1999; Goronzy et al., 2004; Svendsen, 2004; Wolff et al., 2001). For example, pronunciation rules 
were derived using the speech training data, which in turn could be applied to generate one or 
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more baseforms of any vocabulary word in the pronunciation dictionary (Svendsen, 2004). In 
addition, variants were derived using a phoneme recognizer such that pronunciation rules 
could be constructed using a decision tree (Fosler-Lussier, 1999). Confidence measures were 
then used to select only the most reliable variants from among all the recognized variants; a 
similar approach was applied in the Verbmobil project reported in (Wolff et al., 2001). As 
another example, non-native speech was first examined using a phoneme recognizer to 
determine variants, and then variants caused by recognition errors were removed based on the 
statistics pertaining to the co-occurrences of phonemes (Amdal et al., 2000). In this way, 
Goronzy et al. (Goronzy et al., 2004) used an English phoneme recognizer to generate English 
pronunciations for German words and used decision trees that were able to predict English-
accented variants from German canonical transcriptions. 

5.3 Confusability reduction of pronunciation dictionary 
As described above, data-driven methods adapt a pronunciation dictionary after building 
variant rules from the derived pronunciation variants, whereas a knowledge-based method 
derives variant rules based on phonological and phonetic knowledge, and then adds 
alternatives of pronunciation variants into the pronunciation dictionary. However, the 
adapted pronunciation dictionary can have more than one element corresponding to a word 
in the pronunciation dictionary. Therefore, the system memory size must be increased in 
order to store the pronunciation dictionary, which also increases the computational 
complexity and results in a longer decoding time for ASR. It was also observed that adding 
pronunciation variants to the pronunciation dictionary increases the confusability, and that 
a large increase in confusability is probably one reason for only small improvements or even 
deteriorations of ASR performance (Tsai et al., 2002). By appropriately selecting the 
pronunciation variations, the confusability would be reduced. In order to mitigate this 
problem, several approaches have been previously reported, which will be discussed in 
Section 6.2. 

6. Pronunciation model adaptation based on multiple pronunciation 
dictionary 
In this section, we describe a new pronunciation model adaptation method and an 
optimization method of the adapted pronunciation models proposed in (Kim et al., 2008). In 
particular, Section 6.1 describes the proposed pronunciation adaptation method based on an 
indirect data-driven approach that adapts a pronunciation dictionary after building the 
variant rules from the derived pronunciation variants, resulting in a multiple pronunciation 
dictionary. This dictionary can have more than one element corresponding to a word in the 
pronunciation dictionary. Thus, a size optimization method of the multiple pronunciation 
dictionary is also proposed in Section 6.2, in which some confusable pronunciation variants 
in the pronunciation dictionary are removed. Finally, in Section 6.3, the performance of a 
non-native ASR system employing the proposed method is evaluated and compared with 
that using a conventional pronunciation model adaptation method. 

6.1 Multiple pronunciation dictionary 
Fig. 2 shows the main procedure of the proposed pronunciation variation modeling method 
based on an indirect data-driven approach that is applied to non-native speech. From the 
figure, the five steps of the procedure are as follows: 
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Fig. 2. Procedure of the proposed pronunciation variation modeling method based on an 
indirect data-driven approach applied to non-native ASR. 
Step 1. Each utterance in a non-native development set is recognized using a phoneme 

recognizer. 
Step 2. The recognized phoneme sequence is aligned using a dynamic programming 

algorithm based on the reference phoneme sequence transcribed by the native 
pronunciation dictionary, referred to as reference transcription. 

Step 3. Using the alignment results of Step 2), variant phoneme patterns are obtained. 
Step 4. Pronunciation variation rules are then derived from the variant phoneme patterns 

using a decision tree. 
Step 5. Finally, pronunciation variations are generated from the pronunciation variation 

rules, allowing the pronunciation dictionary to be adapted for non-native ASR. 
The details of each processing step are explained in further detail in the following 
subsections. 

6.1.1 Phoneme recognition and aligned sequence 
To derive the pronunciation rules, we first perform a phoneme recognition for each 
utterance in the non-native development set. As a result, we can obtain an N-best list of 
phoneme sequences for each utterance. However, there are no word boundaries in the list, 
which are required to differentiate inter-word pronunciation variations from cross-word 
pronunciation variations. To obtain these word boundaries, the recognized phoneme 
sequence is aligned on the basis of a dynamic programming algorithm and compared to the 
reference transcription with word boundaries.  
From the alignment between the recognized phoneme sequence and the reference 
transcription, a rule pattern is obtained if the following condition is satisfied: 

 2 1 1 2L L X R R Y− − + + →   (7) 

where X is a phoneme that is to be mapped into Y, and the left and right phonemes in the 
reference transcription are L1 and L2, and R1 and R2, respectively. 
It is known from (Goronzy et al., 2004) that it is rather difficult to differentiate pronunciation 
variations from the substitution, deletion, and insertion errors incurred by phoneme 
recognition. Therefore, the recognition errors should be as small as possible; thus, three 
subsequent processes are applied to reduce these errors. First, we perform a Viterbi search 
based on the N-best lists. Second, we only extract a sentence or an isolated word included in 



Non-native Pronunciation Variation Modeling for Automatic Speech Recognition   

 

97 

the development set if its phoneme recognition accuracy is over the predefined threshold. 
Third, if more than half of the neighboring phonemes of X in Eq. (7) are different from the 
neighboring phonemes of the target phoneme Y, this rule pattern is removed from the rule 
pattern set. 

6.1.2 Decision-tree based rule derivation and pronunciation dictionary adaptation 
Decision-tree based modeling is a popular method of deriving pronunciation variation rules 
(Fosler-Lussier, 1999; Wolff et al., 2001). Here, we use C4.5, a software extension of the basic 
ID3 algorithm designed by Quinlan (Quinlan, 1993). After the rule patterns are categorized 
by filtering errors, pronunciation variation rules are constructed by C4.5. Their attributes 
include the two left phonemes, L1 and L2, and the two right phonemes, R1 and R2, of the 
affected phoneme X. The output class is the target phoneme, where one decision tree is 
constructed for each phoneme. Next, each decision tree is converted into an equivalent set of 
the rules by tracing each path in the decision tree from the root node to each leaf node. 
Next, a native pronunciation dictionary is adapted from these derived rules using C4.5, 
which results in a multiple pronunciation dictionary. For a more detailed description of 
adapting the pronunciation dictionary, refer to the work in (Kim et al., 2007). 

6.2 Optimized multiple pronunciation dictionary 
The size of the adapted multiple pronunciation dictionary could be much larger than that of 
the baseline pronunciation dictionary. As one solution to this problem, the confusability 
could be reduced by pruning the pronunciation variant rules based on either a rule 
probability, a rule probability using log likelihood, a decision tree, or another method. 
However, this approach does not take into account the interaction between words in a 
multiple pronunciation dictionary (Amdal et al., 2000). In other words, if a word is 
represented by several different phonetic sequences based on pronunciation variant rules 
and one of the sequences is similar to a phonetic sequence of another word, the confusability 
is further increased. Moreover, the confusability of words that have a smaller number of 
phonemes incurs errors in ASR systems (Hernandez-Abrego et al., 2004). Therefore, the 
number of phonemes in a word’s sequence should be used as a measure of the confusability. 
In the following subsections, we propose a confusability measure and explain how the 
measure is applied to reduce the confusability in the multiple pronunciation dictionary of a 
non-native ASR system. 

6.2.1 Confusability measure 
Let M be a multiple pronunciation dictionary. It is assumed that the number of words in M 
is Nw and the i-th word, Wi, included in M, has Np,i pronunciation variants. Here, we denote 
si,j as the j-th pronunciation variant belonging to the i-th word; i.e., M={Wi|i = 1, . . . ,Nw} and 
Wi={si,j|j = 1, . . . ,Np,i}. A confusability measure (CM) is then defined as 

 
, ,, , , , ,1 ,1( ) ( ) min ( , ) ( )

w p ki j i j i j k l k lk N k i l NCM s L s D s s L s≤ ≤ ≠ ≤ ≤ ⎢ ⎥= ⋅ ⋅⎣ ⎦  (8) 

where D(x,y) is the Levenshtein distance between x and y (Levenshtein, 1966). In addition, 
L(x) is the number of phonemes of a pronunciation variant x, normalized by the maximal 
number of phonemes over all the pronunciations in M such that 
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where (x) is defined as the number of phonemes in the pronunciation x. The goal of the 
proposed confusability measure defined in Eq. (8) is to detect pronunciation variants that 
are highly confusable so that ASR errors due to high similarities between the phonetic 
sequences of words in the multiple pronunciation dictionary can be reduced. 
The normalized number of phonemes of a phonetic sequence x, is defined by 

 max( ) /xL x l l=  (10) 

where lx = (x) and lmax is the maximum number of phonemes among all the sequences in M, 
as defined in Eq. (9). Eq. (10) contributes to the reduction of ASR errors because an ASR 
system tends to be more erroneous if the recognized word has a short phonetic sequence 
(Hernandez-Abrego et al., 2004). Therefore, the normalized number of a word’s sequence 
can be used as a measure of the confusability. 

6.2.2 Confusability reduction of multiple pronunciation dictionary 
To reduce the confusability in the adapted multiple pronunciation dictionary, the 
confusability measure, defined in Eq. (8), for each pronunciation variant in the multiple 
pronunciation dictionary is first calculated. After that, all pronunciation variants except for 
the phonetic sequences obtained from the baseform are sorted according to their 
confusability measure scores. Finally, the pronunciation variants whose confusability 
measure scores are above a predefined threshold are used in constructing a pruned multiple 
pronunciation dictionary. 

6.3 Speech recognition experiments 
In order to evaluate the proposed pronunciation adaptation method, the baseline ASR 
system is first constructed. After that, we evaluate the performance of an ASR system using 
the pronunciation dictionary pruned by the proposed confusability reduction method, and 
compare it with that using the baseline pronunciation dictionary or the multiple 
pronunciation dictionary based on the indirect data-driven method. 

6.3.1 Baseline ASR system 
Especially, we want to develop a non-native ASR system that recognizes English spoken by 
Koreans. Thus, we need a training database spoken by native speakers to construct the 
baseline native ASR system. It is also required the native and non-native databases for 
developing and evaluating the non-native ASR system. In this subsection, we first describe 
the native and non-native databases. After that, we discuss how to construct each 
component of the baseline ASR system including ASR features, acoustic models, 
pronunciation and language models. 
1. Training database 

As a training set for the baseline ASR system, we used a subset of the Wall Street 
Journal database (WSJ0) (Paul et al., 1992). The WSJ0 database was a 5000-word closed 
loop task for evaluating the performance of a large vocabulary continuous speech 
recognition (LVCSR) system. The training set consisted of 7,138 utterances recorded by 
a Sennheiser close-talking microphone and several far-field microphones, in which all 
utterances were sampled at a rate of 16 kHz. 
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2. Development and evaluation databases 
For developing and testing the proposed method, we used a subset of the Korean- 
Spoken English Corpus (K-SEC) (Rhee et al., 2004), comprised of English 
pronunciations spoken by both Korean and native English speakers. This database was 
divided into three parts: one was used for developing the pronunciation dictionary 
described in Section 6.1, and the others were evaluation subsets for both the baseline 
ASR system and an ASR system employing the proposed pronunciation modeling 
method. In other words, the two evaluation sets were comprised of utterances spoken 
by 49 Koreans and 7 native English speakers, respectively. The development set 
consisted of 11,125 isolated words spoken by 7 Koreans and 36 sentences by 98 Koreans, 
where each sentence had around 7 words. As a result, we had 7,299 isolated words and 
3,123 continuous sentences for the development set. The two evaluation sets were made 
up of continuous sentences, in which each Korean or native speaker uttered 14 
continuous sentences, resulting in a total of 146 words. In other words, we had 686 and 
98 utterances for non-native speech and native speech, respectively. 

3. Feature extraction 
For the baseline ASR system, we extracted 12 mel-frequency cepstral coefficients  
(MFCC) with logarithmic energy for every 10 ms analysis frame, and concatenated their 
first and second derivatives to obtain a 39-dimensional feature vector. During the 
training and testing, we applied a cepstral mean normalization to the feature vectors. 

4. Acoustic models 
The acoustic models were based on 3-state left-to-right, context-dependent, 4-mixture, 
and cross-word triphone models, and they were trained using the HTK version 3.2 
Toolkit (Young et al., 2002). All triphone models were expanded from 41 monophones, 
which included silence and pause models, and states of the triphone models were tied 
by employing a decision tree (Young et al., 1994). As a result, we had 9,655 physical 
triphones, 68,923 logical triphones, and 5,292 states, which was then referred to as the 
baseline ASR system. 

5. Pronunciation and language models 
To develop a pronunciation dictionary, a back-off bigram language model was 
generated from a phoneme transcription of the training database, and the 
pronunciation dictionary was generated from a list of 41 phonemes with silence. In 
order to explore the behavior of pronunciation models based on the difference between 
the target language and the mother tongue, the pronunciation dictionary was only from 
the text of the test set. The pronunciation of each word was built from the CMU 
pronunciation dictionary (Weide, 1998) and any missing words from the CMU 
dictionary were transcribed manually. The pronunciation dictionary was comprised of 
340 words, which was equal to the number of entries in the pronunciation dictionary. In 
addition, the relative ratio of the pronunciation dictionary size, defined as the average 
number of different pronunciations per word, was 1.  

The performance of the baseline ASR system was tested using the two evaluation sets. 
Consequently, it was found that the average WERs of the baseline ASR system were 0.68% 
and 19.92% when the ASR system was tested by native speakers and by non-native 
speakers, respectively. This result confirmed the fact that performance of the ASR system 
tested by non-native speech could be exceedingly degraded. 
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Table 1. Performance comparison of an ASR system with a) the baseline pronunciation 
dictionary, b) a multiple pronunciation dictionary prior to reduction, and c) a pruned 
multiple pronunciation dictionary based on the proposed confusability reduction method. 
(Reprinted with permission from (Kim et al., 2008). Copyright IASTED/ACTA Press.) 

6.3.2 Evaluation of the proposed pronunciation modeling method 
To generate a multiple pronunciation dictionary, we performed a phoneme recognition and 
obtained a 200-best list for each utterance in the development set. As a phoneme recognizer, 
we used the baseline acoustic models, a phoneme based back-off bigram language model, 
and a pronunciation dictionary with a list of 41 phonemes with silence. By using the 200-
best list, the performance of phoneme recognition was improved from 28.27% to 49.08%. In 
addition, the rule patterns could be generated using only phoneme sequences where the 
phoneme recognition accuracy was over 50%. After applying the rule patterns in C4.5, at a 
pruning option of 25%, we obtained 334 rules from the decision trees. Then, a multiple 
pronunciation dictionary was generated by adapting the baseline pronunciation dictionary 
from the obtained 334 rules. To reduce the confusability, we also applied the proposed 
optimization method to the adapted multiple pronunciation dictionary. 
Table 1 compares the average WERs, the pronunciation dictionary size, and the ASR 
decoding time for the baseline ASR system and the ASR systems employing the multiple 
pronunciation dictionary and the pruned multiple pronunciation dictionaries according to 
pruning thresholds of 0, 0.1, 0.2, and 0.3. It can be seen in the table that the ASR system 
employing the multiple pronunciation dictionary increased the WER, compared to that 
employing the baseline pronunciation dictionary. The performance degradation incurred by 
the proposed multiple pronunciation dictionary was due to the increased confusability by 
improper pronunciation variants. 
Next, the multiple pronunciation dictionary was pruned using the proposed confusability 
measure, and the average WERs of the ASR system using the differently pruned multiple 
pronunciation dictionaries are shown in the third row of Table 1. The table shows that the 
pruned multiple pronunciation dictionary constructed with a threshold of 0.1 gave the 
lowest average WER among all other dictionaries. That is, the average WERs of an ASR 
system using the pruned multiple pronunciation dictionary were 18.58% and 0.59% for non-
native and native speech, respectively, which corresponded to relative WER reductions of 
6.98% and 15.30%, compared to those of the baseline ASR system and an ASR system using 
the multiple pronunciation dictionary prior to pruning. Moreover, the ASR decoding time 
for the pruned multiple pronunciation dictionary was also reduced by 21.10% compared to 
that for the multiple pronunciation dictionary without pruning. 
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7. Conclusion 
This chapter addressed issues associated with efficient pronunciation variation modeling for 
non-native automatic speech recognition (ASR), where non-native speech was mostly 
characterized by different pronunciations, speaking styles, and articulators of speakers from 
their native speech. The techniques for improving the performance of non-native ASR could 
then be classified into four approaches: acoustic modeling, language modeling, 
pronunciation modeling, and hybrid modeling approaches. We first reviewed these four 
approaches before proposing a new pronunciation model adaptation method. 
In particular, the proposed pronunciation adaptation method was based on a multiple 
pronunciation dictionary, designed using an indirect data-driven method. However, this 
approach resulted in an increased search space for ASR decoding due to the increase of the 
pronunciation dictionary size. Therefore, a method for optimizing the size of the multiple 
pronunciation dictionary was also proposed, where a confusability measure based on the 
Levenshtein distance was introduced in order to remove some confusable pronunciation 
variants from the dictionary. To investigate the effects of the proposed approach on ASR 
performance, English was selected as the target language and English utterances spoken by 
Koreans were considered as the non-native speech. Subsequently, it was shown from the 
continuous non-native ASR experiments that an ASR system using the optimized multiple 
pronunciation dictionary could achieve an average word error rate reduction of 15.30%, 
with a relative reduction in computational complexity of 21.10%, compared to that achieved 
using the multiple pronunciation dictionary without optimization. 
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1. Introduction 
The chapter will present the first applications of speech technologies in the countries of 
Western Balkans, launched by the Serbian company AlfaNum. The speech technologies for 
Serbian and kindred South Slavic languages are developed in cooperation with the 
University of Novi Sad, Serbia. Most of these applications are rather innovative in Western 
Balkans and they will serve as a base for complex systems which will enable 20 millions of 
inhabitants of this part of Europe to talk to machines in their midst in their native languages, 
equally to their counterparts who live in more developed countries in the region.  
Firstly, the importance of research and development of speech technologies will be stressed, 
particularly in view of their language dependence and, on the other hand, the possibility of 
their wide application. The central part of the chapter will focus on the results of the 
research and development of the first applications of automatic speech recognition (ASR) 
and text-to-speech synthesis (TTS) across Western Balkans – some of them are a novelty in a 
much wider region as well. The paper will be concluded by the directions of future research 
and development of new applications of speech technologies in the Western Balkan region 
and worldwide. 

1.1 Relevance of the research and development of speech technologies 
When communicating with others, people predominantly use the senses of sight and 
hearing – they speak, listen and watch. On the other hand, when communicating with 
machines (computers, telephones, robots, cars etc.), they mostly use the senses of sight and 
touch – they look at monitors and touch keyboards, mice or touch screen displays. It is 
worth noting that humans rarely address machines using speech and that machines rarely 
use speech to respond, although spoken communication is the most natural form of 
communication among humans. Apart from a number of fundamental problems related to 
ASR and TTS applications, addressed in more detail in (Delić et al., 2010), another possible 
reason for this is the fact that speech technologies are highly language dependent, and that a 
number of necessary resources and techniques have to be developed for each language 
separately. The most has been done for languages spoken by relatively large communities, 
but quality solutions for languages with smaller communities are beginning to emerge. 
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ASR is language dependent to a great extent, and TTS to an even greater. There are several 
aspects of this language dependence: (1) A database of at least several hours of recorded 
speech in a specific language must exist, in order to be able to produce high-quality synthe-
sised speech, regardless of the method used. Speech databases for ASR training, which can 
be of much greater size, are also language dependent. (2) Morpho-syntactic analysis and 
syntactic-prosodic parsing of the input text have to be carried out, and both tasks are highly 
language dependent. (3) Based on the previous analysis of input text, appropriate prosody 
features (phone duration, f0 contour and energy) have to be generated. 

1.2 Integration of ASR and TTS engines into applications 
AlfaNum TTS and ASR engines can be used through a number of interfaces, all of them 
built upon basic TTS and ASR libraries written in C++. The main reason for their design was 
to make engine integration into existing products as simple and as fast as possible.  
• C++ library (proprietary interface) – TTS and ASR C++ libraries are at the base of all 

supported interfaces.  
• Microsoft SAPI – The Speech Application Programming Interface or SAPI is an API 

developed by Microsoft to allow the use of speech recognition and speech synthesis 
within Windows applications. Both SAPI 4 and SAPI 5.x interfaces are implemented. In 
general, all versions of the API have been designed such that a software developer can 
write an application to perform speech recognition and synthesis by using a standard 
set of interfaces, accessible from a variety of programming languages. Speech engines 
are built as standard COM objects by implementing the required COM interfaces. 

• Media Resource Control Protocol – The Media Resource Control Protocol (MRCP) is a 
protocol proposed by the Internet Engineering Task Force (IETF), which has the goal of 
standardising computer dialogues between the ASR and TTS with interactive voice 
response (IVR). Clients send MRCP messages to the server over a network usually by 
means of another protocol, such as Real Time Streaming Protocol (version 1) or Session 
Initiation Protocol (version 2). AlfaNum servers comply with version 2 of MRCP protocol. 

• AlfaNum IP server/client (proprietary interface) – This interface is based on a 
proprietary protocol which includes additional functionality not found in any of the 
industry standard protocols. This protocol is designed to make the system more robust 
and provides faster content delivery. For this purpose speech engines (C++ libraries) 
are built into the AlfaNum IP servers. Along with the server, TTS and ASR client 
libraries are created to enable developers the use of AlfaNum IP server functionality 
from within different programming languages. Client libraries are developed for C++, 
C#, Visual Basic and PHP programming languages.  
The basis of AlfaNum IP server is a multi-threading protocol which accepts connections 
from client applications and is based on TCP/IP. The functioning of the server can be 
explained through two types of sockets that are created. The first one is the listening 
socket, which collects connection demands generated by clients. After the demands are 
received, a service socket is opened for each client, through which further communication 
is carried out, as shown in Fig. 1. Such a mechanism enables handling a large number of 
users and simple addition of new routines.  
Besides remote access, the client library that encompasses the communication between 
the applications and the server also enables the use of multiple ASR/TTS servers 
(located at different computers) in case of need for a large numbers of simultaneous 
requests for speech recognition. 
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Fig. 1. Communication protocol of the AlfaNum IP server 

Within speech-enabled applications ASR components are commonly coupled with TTS 
components, thus completing the cycle of human-machine speech communication (Delgado 
& Araki, 2005). Various areas of interaction have so far been covered, and today there are 
active systems offering e.g. information related to bus schedules and stock market, as well as 
any information that can commonly be found in electronic newspapers. 

2. ASR applications 
The public telephone network is currently the most promising ground for application of 
speech technologies (Nöth, 2004). The first applications of ASR in Western Balkans have 
been launched at the public telephone network, with support by intelligent network functio-
nalities. Some of the innovative applications of ASR in Serbia will be described in the fol-
lowing sections. 

2.1 Interactive Voice Response systems 
As has been mentioned before, ASR and TTS IP servers have found their first applications 
within AlfaNum Interactive Voice Response (IVR) systems. An IVR system is a compute-
rised system allowing a user (a telephone caller) to choose among various options offered in 
voice menus. The first IVR systems played pre-recorded voice prompts to which the user 
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would press a number on a telephone keypad to select the option. Integration of ASR and 
TTS components significantly improve this interaction and complete the cycle of human-
machine communication. The foundation of all IP server based IVR systems developed is 
the simultaneous functionality of ASR and TTS servers and their communication with a 
required number of IVR processes (one per telephone line) via IP protocol. 
Intel/Dialogic Telephony Cards provide a connection to the public telephone network. 
Through it, the calls are routed to any of the free channels managed by the IVR controller. 
At the same time, the controller provides a link to the database and ASR and TTS servers. 
The database represents an information source from which data is presented to the user by 
TTS in the form of synthesised speech, based on user requests that the system acquires via 
ASR. The ASR and TTS servers can reside on remote computers (dedicated if required) and 
can communicate with a number of different IVR applications. 
Specific properties of such systems, from the point of view of ASR, manifest themselves in 
the need for activation of different recognisers according to options offered to the user in a 
given moment. Furthermore, the systems handle information that changes dynamically, and 
for that reason the grammars used for recognition often have to be generated dynamically 
according to the database contents. The basic organisation of an AlfaNum IVR system is 
shown in Fig. 2. 

 
Fig. 2. The basic organisation of an AlfaNum IVR system 
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2.2 Advertising monitor 
Besides application in the field of telephony, the AlfaNum ASR engine has also been 
implemented in systems that perform searches through a large amount of audio material. 
One of such systems, Advertising Monitor (Pekar et al., 2007), is an application that locates 
audio content such as jingles and commercials in audio archives. The system comprises a 
number of FM and TV tuners receiving signals from various radio and TV stations, and a 
search service that can be distributed to multiple computers. Specific properties of the 
material being searched allow the use of a simplified recognition process based on LPC 
coefficients. Unlike classical speech recognition, the input to this system is subject to 
different types of variations, which is reflected in the sound signal processing algorithm. 
However, there are also some alleviating circumstances for development of such a system: 
• A complete absence of temporal variability between the reference recording and the test 

recording. 
• A drastical reduction in acoustic variability in comparison with classical speech 

recognition. In this case, acoustic variability is the consequence of changes in channel 
properties (spectral changes and noise), which evolve slowly over time and the effect of 
which can be reduced to a sufficient degree using first time derivatives of acoustic 
features. 

For that reason, processing of the sound signal amounts to calculation of its dynamic 
features, namely, first and second time derivatives of LPC coefficients. In this way there is 
no front-end processing in recognition and a significant portion of the processor time can be 
saved. Furthermore, because of the aforementioned absence of temporal variability, simple 
one-on-one comparison of the reference recording and the incoming signal can be applied 
instead of DTW or another, more complex time-alignment algorithm. Blocks containing the 
reference recording simply slide along the received signal and block-by-block comparison is 
carried out through calculation of the average distance between blocks of the reference 
recording and corresponding points in the received signal. When a very significant drop in 
the distance is observed, it can be concluded that the reference recording was located in the 
received signal, as shown in Fig. 3. 
 

 
Fig. 3. Distribution of the average distance between the reference recording and the received 
signal 
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The system can fail only in cases where there is a significant mismatch between the original 
reference recording and the occurrence of the same audio material in the received signal 
(e.g. a truncated or overdubbed commercial). However, such problems can be efficiently 
handled by appropriate postprocessing techniques. 

2.3 Word Spotter 
AlfaNum Word Spotter (Mišković et al., 2007) is an application that locates key words and 
phrases, given as text, in arbitrary audio material. The system relies on the ASR speech re-
cognition engine, and the nature of the system indicates its areas of use and features ex-
pected by its users (various security agencies, media monitoring agencies etc.). 
The functioning of the AlfaNum Word Spotter is based on the phoneme-based, speaker in-
dependent speech recognition system, AlfaNum ASR. Particular features of the application 
are related to the way trellises for given key words and phrases are built. If the standard 
approach to speech recognition is taken, with adaptation of syntax so as to allow for 
multiple pronunciations of a single word, word spotter produces the recognition result as a 
sequence of arbitrary number of silence models, noise (“garbage”) models, key word models 
and wildcard models (universal models covering parts of an utterance that do not contain 
key words). This is the consequence of the way the trellis for each key word is generated, as 
shown in Fig. 4 (word 1,... word n represent transcriptions of basic and inflected forms of a 
word). 
 

int 

word 1

wildcard

word n

silsil

 
Fig. 4. Transition diagram of the AlfaNum Word Spotter 

As can be seen in the figure, besides key words and phrases, trellis also contains non-speech 
states as well as states modelling various types of noise (INT). Having such a structure in 
mind, buildup of a trellis of the word spotter is based on the following rules: each sequence 
must begin with silence (non-speech state of an unlimited duration), from silence it is 
possible to traverse only into an initial state of a key word or phrase or into a noise or 
wildcard model, a word has linear structure and limited duration, from the final state of a 
key word or phrase it is possible to traverse only into the state of silence, which is at the end 
of every sequence. 
Unlike application of ASR in interactive voice response systems or call centres, where a user 
can be asked to repeat the utterance more clearly in case of unreliable recognition, in case of 
a word spotter error rate has to be reduced to a minimum possible level. 
Two types of errors can be identified. The first type of errors is related to key words that 
existed in the recording, but were not recognised by the system (false negatives), and such 
errors are critical from the point of view of system reliability. The second type of errors is 
related to the words that did not exist in the recording, but were nevertheless “recognised” 
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by the system (false positives). Eliminating as much false positives as possible without 
creating significant false-negative results is a very demanding task, directly related to 
specific properties of ASR algorithms. Some of the false positives can be eliminated by 
subsequent comparison of the durations of particular phonetic segments of the recognised 
word or phrase to the expected ones (Mišković at al., 2007). The graphical user interface of 
the application has been designed so as to enable the user to eliminate a significant number 
of false positives, since the recognition results (recognition locations) are displayed in order 
of decreasing reliability. The user can thus decide to stop manually checking the results 
when a sufficiently high rate of false positives is reached. A portion of the graphical user 
interface related to recognition result verification is shown in Fig. 5. The figure shows the 
situation after some of the results have been checked, and the distribution of accurate 
recognitions vs. false positives can be observed. 
The next step in the development of this tool would be in the direction of its integration with 
a system for recording telephone conversations. 
Besides the applications described in this section, developed on the basis of the existing 
system for speech recognition, there is a number of areas in which the application of this 
system is yet to be expected. Ongoing development of a continuous speech recognition 
 

 
Fig. 5. A segment of the graphical user interface of the AlfaNum Word Spotter 
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system for large vocabularies expands the area of application of this technology. The first 
applications are expected to be dictation systems, spoken dialogue systems and applications 
for automatic subtitling of TV shows. Applications related to speaker identification and 
verification will also be developed. 

3. TTS applications 
This section will describe the first applications of text-to-speech synthesis in Serbian and 
kindred South Slavic languages. The AlfaNum TTS engine supports a number of interfaces 
in order to facilitate its integration into useful applications. Some of these interfaces are 
standard, such as the C++ library, Microsoft SAPI5, Microsoft SAPI4, and MRCP, however, 
communication with other components in sophisticated systems is also possible via a 
custom designed AlfaNum IP protocol (implemented through libraries in C++, Visual Basic, 
C# and PHP).  

3.1 AnReader 
The first widely applied TTS-based system in WBCs is anReader (Delić et al., 2005; Sečujski et 
al., 2007), used by almost one thousand visually impaired persons in Serbia, Bosnia and 
Herzegovina, Montenegro, Croatia and FYR Macedonia. Before the appearance of anReader, 
the most widely used system was WinTalkerVoice, originally built for Czech language. It 
produced synthesised speech of poor quality in Serbian and Croatian, and has therefore 
never been used for any other purpose than as aid for the visually impaired. AnReader, on 
the other hand, was initially developed for Serbian, and later for Croatian and Macedonian 
as well. The basic concepts are the same, but the morphological dictionary (especially the 
information related to accentuation) and the rules for morpho-syntactic analysis had to be 
modified. The Croatian anReader required that a new speech database in Croatian be 
recorded and processed, while the Macedonian version currently uses the Serbian speech 
database, with slight impairment of speech quality as a result. High-level speech synthesis 
of Serbian and Croatian is performed using expert POS taggers, while for Macedonian full 
POS-tagging is never performed since it is not necessary for reasonably natural 
pronunciation of Macedonian (owing to the simplicity of accentuation in Macedonian in 
comparison to the other two languages). 
It should be kept in mind that, for a visually impaired user to be able to use a computer 
unaided, besides a synthesiser such as anReader, he/she also needs a screen-reader, an appli-
cation attempting to identify and interpret what is being displayed on the screen, as well as 
to communicate information on menus, controls, and other visual constructs. Owing to a 
number of freely available screen-readers, a quality speech synthesiser remains the critical 
component needed by any visually impaired individual for unaided computer access. 
Owing to its superiority, anReader has quickly gained popularity among the visually 
impaired computer users in all of the countries of Western Balkans, and its use has resulted 
in a tenfold multiplication in their number, earning it the status of an official aid for the 
visually impaired, available to the visually impaired in Serbia through the Institute for 
Health and Social Care of the Republic of Serbia. 
The new, higher quality of synthesised speech in Serbian and the potentials of its TTS engine 
for South Slavic languages were recognised very soon and, consequently, anReader was 
awarded the first prize of the Serbian Society of Informatics as the best applied software 
product in 2004. 
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3.2 Audio library for the visually impaired 
There are more than 10.000 persons in Serbia with a visual disability of some kind, and a 
much larger number throughout the region of Western Balkans. The greatest centre for edu-
cation of the visually impaired in Serbia and the entire Western Balkans is the School for the 
Visually Impaired Children „Veljko Ramadanović“ in Zemun. Until the introduction of the 
Audio library for the visually impaired (ABSS) (Mišković et al., 2005), written information 
necessary for education of the pupils of this school had been available in the form of Braille 
books, which are well known to be very impractical and extremely expensive to prepare, 
store and maintain, as well as audio recordings of books read out by human speakers, which 
have basically the same drawbacks. Preparation of both Braille and audio-books is also a 
lengthy process, making them quite inconvenient as media for accessing constantly chang-
ing information. 
The Audio library for the visually impaired was developed in answer to these problems. It is 
a web-accessible client-server system in which a large quantity of books and texts from other 
sources is stored at the server side, while the client application enables an individual user to 
access the desired text, download it and have it converted to speech using a TTS system, 
namely, anReader. Searches by author name, genre and content are supported, and naviga-
tion through texts is intuitive and efficient due to a number of useful options. The texts are 
stored in an encrypted format in order to ensure the legal rights of copyright owners, pre-
venting the users from being able to copy or print them. 
As mentioned before, the Audio library is organised as a client-server application (Fig. 6). 
The administrator application, the database of books and the server in charge of handling 
user requests and accessing the database are situated on the server side. The books are 
internally stored in HTML format, which facilitates the retrieval of particular paragraphs 
before actual synthesis of speech. The client side contains an application intended for direct 
interaction with the visually impaired users as well as network communication. The user 
interface comprises two modules – anAdministrator (on the server side) and anKlijent (on the 
client side). The anAdministrator module is in charge of library administration, enabling 
inclusion and management of new books as well as search for (and within) the existing. The 
latest version of the library (Mišković et al., 2006) is multilingual, taking full advantage from 
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Fig. 6. Internal organisation of the Audio library 
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the fact that anReader has been developed for Croatian and Macedonian language as well, 
and that speech synthesis integrated into MS Windows can be used for reading books in 
English as well.  
The anAdministrator module is completely speech enabled, which in turn enables the visu-
ally impaired to administrate the library themselves. The functionality of the application 
(connecting to the database and performing queries) is realised through ODBC (Open 
Database Connectivity) drivers for MySQL. The anKlijent module is speech enabled as well, 
which eliminates the need for any additional screen reader (a solution that would be hardly 
possible to use anyway, since the complete interface is in the language of the user’s choice). 
The executive module of the entire application is anKlijent, which relies on the communi-
cation module and on Microsoft SAPI 5.0, which provides access to Windows virtual speak-
ers. The SAPI interface offers a number of advantages related to automatic handling of 
audio-devices, multi-threading, speaker selection etc. For that reason, besides AlfaNum TTS, 
which is implemented as two virtual speakers, anKlijent can also use the original Windows 
speech synthesis, which is suitable for handling texts written in English.  
The initial version of the Audio library used RPC (Remote Communication Protocol) for com-
munication. However, introduction of web access in the version 2.0 required implementa-
tion of new routines and a higher degree of control. For that reason, it was necessary to 
implement a custom protocol, based on ASR and TTS IP servers, which better answered the 
needs of dial-up users in particular, and the AlfaNum IP server, described in detail in 
section 1.2, was used for this purpose. Thus, the library has become a system independent 
from the actual location of the server and the database of books, since it allows the use of 
Internet for client-server communication. 
The Audio library, as such, represents a significant step towards equality in education and 
access to information for the visually impaired. It is also a very convenient tool for all those 
who prefer textual content to be read out to them aloud while they are busy performing 
other tasks at their computers. 

3.3 Voice enabled web sites 
One of the recently developed applications of speech synthesis is enabling arbitrary web 
sites with speech synthesis through an IP TTS server particularly designed for this purpose. 
Owing to this system, visitors of web sites are able to listen to textual content instead of 
reading it, leaving their eyes free for some other task.  
The interface to the server is remarkably simple, based on a PHP library and an accompany-
ing javascript, facilitating integration of TTS functionality into existing web sites with 
minimal human intervention. The PHP library is universal, and the javascript is easily 
adaptable to each particular website.  
The TTS server is optimised for enabling websites with speech synthesis through streaming 
of mp3 compressed sound, which results in virtually instantaneous server response. The 
server contains a minimum HTTP server within, which supports GET requests for file deli-
very by responding to them by direct sending of mp3 streams from the buffer in case the 
entire text has not yet been synthesised or by sending the recorded file in case the synthesis 
has been accomplished. Mp3 content is delivered to a Flash mp3 player embedded into the 
client application.  
The process of requesting and obtaining synthesised speech can be summarised as follows 
(Fig. 7): 
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• WEB browser issues a request for a speech enabled web page; 
• WEB server issues a TTS request; 
• TTS server initiates synthesis and responds by sending the synthesised file name back 

to the WEB server; 
• WEB server responds to the WEB browser by sending HTML content (with the 

embedded player’s ”file” parameter set to the actual name of the synthesised file); 
• WEB browser displays the page and requests mp3 encoded speech from the TTS server; 
• TTS server’s embedded HTTP server responds by sending the mp3 stream. 
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Fig. 7. Retrieval of synthesised speech from a speech enabled web site 

The first speech enabled web site in the Western Balkan region is the site of Radio television 
Vojvodina (the northernmost province of Serbia) (http://www.rtv.rs), using the AlfaNum 
TTS engine. This web site was speech enabled in May 2009. After this pilot project has been 
successfully carried out, the interest for this web site feature across the Western Balkan 
countries has been on the increase and the AlfaNum team has recently obtained support 
from the Ministry of Science and Technological Development of the Republic of Serbia in the 
effort of enabling a significant number of Serbian web sites with speech. 

4. ASR&TTS applications 
4.1 Web portal Kontakt 
Text-to-speech, as a technology with a wide range of application, becomes even more 
powerful when coupled with ASR. One of the examples of this is the web portal Kontakt, 
developed by the same team (Ronto & Pekar, 2005). This portal, intended primarily for 
visually impaired and elderly users, can be accessed by both computer users and those who 
do not own or use a computer since it is accessible by telephone as well, and it is essentially 
an Internet site whose contents are updated automatically from the websites of 4 well-
known news sites in Serbia. Furthermore, authorised users can access it and submit infor-
mation of particular interest to the visually impaired and/or the elderly. Each time the 
contents of the website are updated, the menu structure in the interactive voice response 
(IVR) interface is updated automatically as well. The users can, thus, navigate the site 
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through voice commands and receive information via synthesised speech. Through the 
same interface, the users can change the speaker, speech rate and pitch, according to their 
own preferences. The portal is accessible via the intelligent network at a 0700 telephone 
number, which means that each user pays only the price of the local telephone call, 
regardless of the actual origin of the call. 
The portal relies on a speech database as a source of information. In order to present the 
requested information to the user, it is necessary to send a query to the database, and receive 
the requested information in response. For the system to be efficient enough, it has to pro-
vide simultaneous access to information to a sufficient number of users. If the portal is ac-
cessed via telephone, the entire human-machine communication is carried out via speech.  
In this case, as presented in Fig. 8, the communication in the system is based on interactive 
voice response (IVR) applications which handle one telephone line each through ASR and 
TTS IP servers and retrieve the requested information from the database mentioned above. 
The advantage of such a solution is in the fact that ASR and TTS servers can be remote and 
dedicated exclusively to speech recognition and synthesis. A possible disadvantage would 
be the delay in response in case of server overload.  
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Fig. 8. Handling user requests in the system 

The database in Fig. 8 is actually a MySQL database, which enables automated generation of 
web pages using PHP scripts, as well as a reliable connection with the IVR application 
realised through the C API of MySQL. The contents are refreshed using a puller application 
designed so as to gather new contents from the Internet on a periodical basis. These contents 
can be managed via an ordinary browser under administrative credentials. The system 
communicates with the telephone line using a Dialogic CTI card, and communication is 
controlled through Dialogic dx and Global Call API. The number of telephone lines that can 
be handled depends on the number and type of Dialogic cards integrated into the PC 
platform of the system. 
Having in mind the technological limitations of ASR, users can form their queries in a 
standard format described by a number of grammars, which define the set of words, phrases 
and their combinations expected as input to the ASR process at any given moment. An 
example would be the initial grammar of the system, actual at the moment when the user 
initially addresses the system: 
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cmd = TEME | NASLOVI;1 
gr = <gar>;  
main = [$gr] [$cmd] [$gr]; 

 

where <gar> stands for any noise that is to be ignored during recognition. A successful 
navigation through a menu structure requires a new grammar to be defined at each point in 
the dialogue. The menu structure depends on the defined topics in the database, and on the 
other side, changes in the content of the database must have as little influence as possible on 
the design of the entire system. The only acceptable solution is to automatically generate 
grammars from the database. In the latest version of the system, grammars are defined at 
the initialisation of the IVR application. The ASR server is started thereafter, and thus it uses 
up-to-date grammars. The only deficiency of such an approach is that, if the database is 
refreshed while the application is active, the ASR server needs to be restarted.  
For any newly generated grammar to be successfully used by the ASR server, it is necessary 
to communicate the location of each new grammar file to the server. This is done via the 
initialisation file of the ASR server, which contains all settings relevant to the functioning of 
the server, such as the parameters related to speech signal processing, recognition itself, IP 
port through which server communicates and other data related to the server. These data 
contain the vector of recognisers, defining the name, grammar file paths, postprocessor, 
pronunciation dictionary and phonetic transcriptor for each recogniser. In this context, the 
term “recogniser” denotes a set of rules to be used for recognition at a given moment. For 
the ASR server to be initialised with all newly generated grammar, it is necessary to 
establish a recogniser for each one of them, with all the necessary parameters, and include it 
into the vector of recognisers. From the point of view of the IVR application, defining all 
parameters of a recognition amounts to the selection of the appropriate recogniser.  
The parameters of synthesis, on the other hand, can be configured by the users themselves. 
Each time a user logs out, the synthesis parameters of his/her choice are stored in the 
database, and the next time the user logs in, the same values are restored. 
As such, the system was designed as a point of support to a number of the visually impaired 
and the elderly. As a project of great importance, the portal Kontakt has received support 
from Telekom Srbija, the Lottery of Serbia, as well as the community of the visually 
impaired in Serbia. The similar portal has been established in Croatia, with the only 
difference in that, at the moment, it updates its contents from a single news website.  

4.2 iTEMA E-mail reader 
iTEMA (Intelligent Telephone E-mail Access) is a multilingual CTI application for voice-
enabled telephone access to user e-mails, developed within the joint EUREKA project E!3864 
(Žganec Gros et al., 2006; Žganec Gros et al., 2008). 
The architecture of the iTEMA system contains an interface towards a number of SAPI 
compatible TTS engines. The central element of the system is a dialogue manager connected 
to both telephone and Web interface (Fig. 9). Personal settings for each user, such as mobile 
phone number, PIN, e-mail access parameters, are stored in a database. 
A user dials the number of the iTEMA user service and a human-machine dialog is initiated. 
Authentication is performed based on ANI and PIN, and followed by a personalised dialog 
enabling simple and intuitive navigation through a menu system. Through this dialog users 

                                                 
1 which can be translated from Serbian as TOPICS | TITLES 
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can select messages they want to listen to, delete, or reply to using one of the pre-defined 
templates. 
Beside drivers and business people, iTEMA also provides e-mail service to those who have 
difficulties when using a computer but use a telephone as a matter of routine (the visually 
impaired, many of the elderly etc.). The iTEMA project thus represents material support to 
the e-inclusion programme of the EU. 

Administration 
module

Database

User settings 
module

I n t e r n e t

E-mail accessE-mail server Dialogue Telephone 
interface User

SINT 
interface

TTS 
language 1

TTS 
language 2

 
Fig. 9. Internal architecture of the iTEMA system 

4.3 Computer games for the visually impaired 
Besides the applications mentioned in the previous sections, the AlfaNum TTS engine, 
coupled with the AlfaNum ASR engine, was also used to create new computer games de-
signed for entertainment and education of visually impaired children (Delić & Vujnović 
Sedlar, 2010; Lučić et al., 2009; Mester et al., in press). 
In their study (IGDA, 2004) the International Game Developers Association discusses the 
availability of games to every person with a disability. The study presents speech syn-
thesisers (TTS), screen readers and speech recognition (ASR) as assistive technologies which 
can contribute to a greater availability of games for the visually impaired. Unfortunately, the 
application of these new technologies which would allow the adaptation of the user 
interface to the ergonomics of the visually impaired is not the primary concern for the game 
industry. On the other hand, a connection between the visually impaired children and these 
technologies is of a crucial importance to their inclusion into the society (Perepatić, 2010). 
User interfaces differ from game to game, and consequently, the ability to be adapted to the 
visually impaired, as well as the process of adaptation itself, also differs from game to game. 
Audio signals are the key factor of these games when adapted to the visually impaired. 
These audio signals have to differ from each other so that the player can easily identify them 
and respond at the right moment and in a right manner. At http://www.AudioGames.net, 
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one of the best known web sites with audio games, there are more than 300 audio games, 
and their classification and examples are given in (Mester et al., in press). 
In the process of creation of audio games particular attention is paid to presenting 
information in audio form, because sound presentation must carry all relevant information 
that allows the player to react timely and in the right manner. The GUI of a video game 
carries most of the information, which gives particular broadness and freedom while 
developing such games as opposed to audio games. Portraying all relevant information in 
audio form presents an interesting challenge because the presentation of audio information 
to the user is limited. In sound-based games the player gets a mental picture of all present 
objects and persons by listening to the sounds which characterise them. Stereo positioning is 
used to spatially distinguish the sounds of objects. It allows the sound to traverse from left 
to right and vice versa. These sounds are critical for the player and his/her understanding of 
the game. Yet stereo positioning only gives the player one dimension, which is a constraint 
compared to the two dimensions of a screen.  
For example, Delić & Vujnović Sedlar (2010) have created the first audio game for the 
visually impaired with ASR and TTS in Serbian. It is a simple memory game with sixteen 
fields hiding eight pairs of objects. Having in mind the characteristics of binaural hearing 
the authors have decided to present the horizontal position of the field by simple stereo 
presentation (different interaural levels between ears), and to indicate the vertical position 
of the field by using different audio frequencies (pitch of synthesised speech – TTS) similarly 
to (Gärdenfors, 2003). The user has a sensation of sound coming from an exact position on a 
four-by-four grid facilitating memorisation of object locations. The user can select the square 
either using verbal commands (by pronouncing the coordinates of the square – ASR) or 
simply using the keyboard. The memory game has been developed as Microsoft application 
in C#, using Microsoft Visual Studio 2008, with sound supported by Microsoft DirectX SDK. 
Another example of a computer game suitable to be adjusted to the visually impaired using 
audio and speech technologies is a set of very simple geometric puzzles named Lugram 
(Lučić & Vujnović Sedlar, 2009). Geometry as a branch of mathematics is one of the most 
difficult areas from the point of view of adaptation for the visually impaired, but on the 
other hand, it is very useful for orientation in space and executing everyday tasks. Follow-
ing the example of the ancient Chinese Tangram, Lugram has been designed as a puzzle 
game aimed at composing given geometric figures. Elements to be used for assembling are 
square tiles containing geometric figures such as triangles, rectangles or squares, as shown 
in Fig. 10. One direction of the development of the game led to its successful adaptation for 
visually impaired users (Lučić et al., 2009), and opened the perspective for a special chal-
lenge of creating a new version of the game for the blind. Lugram has been developed using 
C++ and Macromedia's Director. 
The audio interface of the game consists of speech, music and various sorts of audio effects. 
Speech is mostly used to introduce the user to the guidelines and rules of the game, and for 
this purpose TTS is most commonly used. Synthesised speech can be used in the game itself 
more or less, depending on the type of the game. Generally, if greater authenticity of the 
situation is to be achieved, or in order to ensure that the right reaction will be made, in most 
cases synthesised speech can be replaced by recorded – natural speech. Audio effects are 
commonly used to illustrate situations or various objects in the game (Ratanasit & 
Moore, 2005). For the visually impaired it is of particular importance to have certain audio 
effects which would tell them whether their reaction was suitable or not. Music can also be a 
good element for depicting states and situations a player can find himself/herself in, or it 
can be used just as a background. 
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Fig. 10. The squares containing geometric figures and an example of a task in the computer 
game Lugram intended for the visually impaired 

Due to the lack of sight, the blind rely on other senses heavily, especially on the senses of 
touch and hearing, making them more advanced (Doucet, 2005), and allowing them to easily 
learn to use keyboards very skillfully. The alternative to using keyboards is ASR. Because of 
intra- and interpersonal differences in the voices of speakers, different setups and qualities 
of microphones and the communication channels, as well as different levels of ambient 
noise, ASR is a very demanding task for the computer games and is not well developed for 
all languages. Studies usually mention using ASR for issuing certain voice commands, but 
unrestricted human-to-computer speech communication is not so common yet. 
Audio interfaces enable the visually impaired to play games more equally to other players. 
As speech is an extremely important element of such an audio interface, speech technologies 
are essential for playability of games with audio interfaces. Development of speech techno-
logies is thus a contribution to inclusion of persons with disabilities into the society. 

5. Conclusion 
The applications presented in this chapter clearly show the importance of development of 
speech technologies. Having in mind the extreme language dependence of these techno-
logies, and the fact that, unlike most other technologies, they cannot simply be „imported 
from abroad“, it is very important that scientific teams from the region should be actively 
engaged in their research and development. Only thus we can expect that the 20 million 
inhabitants of this part of Europe will be able to communicate with machines by speech in 
their native languages in a near future.  

5.1 Directions of further research and development 
One of the directions of furher research and development of speech technologies is multi-
lingual and multimodal human-computer interaction involving not only ASR and TTS but 
speaker and emotion recognition as well. Besides further research aimed at increasing the 
quality of ASR and TTS components, research related to implementation of speech techno-
logies on embedded platforms is also under way, aimed at their application in small por-
table devices. ASR and TTS have an extremely wide area of application, and some projects 
are initiated to apply developed speech technologies in South Slavic languages in smart 
homes, cars, industry, robots and toys. This would enable a number of other applications 
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such as dictation, automated transcription of radio and TV programmes, meetings and 
sessions, telephone conversations etc. 
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1. Introduction  
In the chapter we describe procedures for Croatian speech recognition which are used in a 
limited domain spoken dialog system for Croatian speech. The dialog system would 
provide information about weather in different regions of Croatia for different time periods 
(Žibert et al., 2003). The spoken dialog system includes modules for automatic speech 
recognition (ASR), spoken language understanding and text-to-speech synthesis. In this 
work ASR module based on data-driven statistical and rule-based knowledge approach is 
discussed. Data driven statistical approach is based on large quantities of spoken data 
collected in the speech corpus. Rule based approach is based on Croatian linguistic and 
phonetic knowledge. Both approaches must be combined in a spoken dialog system because 
there is not enough speech data to statistically model the human speech and there is not 
enough knowledge about the processes in human mind during speaking and understanding 
(Dusan & Rabiner, 2005). Speech recognition today, as in the past decades, is mainly based 
on data driven statistical approaches (Huang et al. 2000; Rabiner, 1989). Statistical pattern 
recognition and segmentation algorithms and methods for stochastic modelling of large 
speech quantities are used. The data driven statistical approach uses hidden Markov models 
(HMM) as the state of the art formalism for speech recognition. Many large vocabulary 
automatic speech recognition systems (LVASR) use mel-cepstral speech analysis, hidden 
Markov modelling of acoustic sub word units, n-gram language models (LM) and n-best 
search of word hypothesis (Furui, 2005; O’Shaugnessy, 2003; Huang et al., 2000; Jelinek, 
1999). Speech recognition research in languages like English, German and Japanese (Furui et 
al., 2006) has focus in recognition of spontaneous and broadcasted speech. For highly 
flective Slavic and agglutinative (Kurimo et al., 2006) languages the research focus is still 
more narrowed mainly due to the lack of speech resources like corpuses. Large or limited 
vocabulary speech recognition for Slovene (Žibert et al., 2003), Czech (Lihan et al., 2005; 
Psutka et al., 2003), Slovak (Lihan et al., 2005), Lithuanian (Skripkauskas & Telksnys, 2006; 
Vaičiūnas & Raškinis, 2005) and Estonian (Alumäe & Võhandu, 2004) with applications for 
dialog systems (Žibert et al., 2003), dictation (Psutka et al., 2003) or automatic transcriptions 
(Skripkauskas & Telksnys, 2006) have been reported lately. 
Croatian is a highly flective Slavic language and words can have 7 different cases for 
singular and 7 for plural, genders and numbers. The Croatian word order is mostly free, 
especially in spontaneous speech. The unstressed word system is complex because the 
possible transition of the accent from a stressed word to the unstressed one is conditioned 
by the position of the word in a sentence, which is mostly free. Standard Croatian 
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pronunciation rules sometimes allow more different word accents. Mostly free word order, 
a complex system of unstressed words and nondeterministic pronunciation rules make the 
development of pronunciation dictionary and prosodic rules difficult. On the other hand 
Croatian orthographic rules based on phonological-morphological principle are quite simple 
which simplifies the definition of orthographic to phonetic rules and process of phonetic 
transcription.  
The number of Croatian native speakers is less then 6 millions. Still some interest in the 
research and development of speech applications for Croatian can be noticed. The speech 
translation system DIPLOMAT between Serbian and Croatian on one side and English on 
the other is reported in (Frederking, et al., 1997; Scheytt, et al., 1998; Black, et al., 2002). The 
TONGUES project continued with this research in direction towards large Croatian 
vocabulary recognition system. 
 Croatian orthographic-to-phonetic rules are proposed for phonetic dictionary building. The 
developed Croatian multi-speaker speech corpus was successfully used for the development 
of speech applications. Proposed Croatian phonetic rules captured adequate Croatian 
phonetic, linguistic and articulatory knowledge for state tying in acoustical models of the 
speech recognition system.  
The Croatian speech recognition system is based on continuous hidden Markov models of 
context independent (monophones) and context dependent (triphones) acoustic models. The 
training of speech recognition system was performed using the HTK toolkit (Young et al., 
2002; HTK, 2002).  
Since the main resource in a spoken dialog system design is the collection of speech 
material, the Croatian speech corpus is presented in Section 2. Orthographic-to-phonetic 
rules used in the phonetic dictionary preparation are shown as well. Further the acoustic 
modeling procedures of the speech recognition system including phonetically driven state 
tying procedures are given in Section 3. Conducted speech recognition experiments and 
speech recognition results are presented in section 4. We conclude with discussion on 
advantages of the proposed acoustical modelling approach for Croatian speech recognition 
and description of current activities and future research plans. 

2. The Croatian speech corpus    
The Croatian speech corpus includes news, weather forecasts and reports spoken within 
broadcasted shows of the national radio and television news broadcasted at the national TV 
(Martinčić-Ipšić and Ipšić, 2004). The collected speech material is divided into several 
groups: weather forecasts read by professional speakers within national radio news, 
weather reports spontaneously spoken by professional meteorologists over the telephone, 
other meteorological information spoken by different reporters and daily news read by 
professional speakers.  
The speech corpus is a multi-speaker speech database which contains 16,5 hours of 
transcribed speech spoken in the studio acoustical environment and 6 hours of telephone 
speech. The spoken utterance has its word level transcription.  
The first part of the speech corpus consists of transcribed weather forecasts and news 
recorded from the national radio programmes. This is a multi-speaker database, which 
contains speech utterances of 11 male and 14 female professional speakers. The radio part 
consists of 9431 utterances and lasts 13 hours. The transcribed sentences contain 183000 
words, where 10227 words are different. Relatively small number of 1462 different words in 
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the weather forecast domain shows that this part of the speech database is strictly domain 
oriented.  
The second part contains weather reports given by 7 female and 5 male professional 
meteorologists over the telephone. The 170 transcribed weather reports are lasting 6 hours 
and contain 1788 different words in 3276 utterances. Most of the speech captured in the 
telephone part can be categorized as semi-spontaneous. This data is very rich in background 
noises such as door slamming, car noise, telephone ringing and background speaking and 
contains noise produced by channel distortions and reverberations. All this special events 
and speech disfluencies and hesitations are annotated in transcriptions by < >. 
The third part of the speech database consists of TV News broadcasted at the national TV – 
HTV. The news data is not domain oriented. Diversity of subjects and topics is noticeable in 
the number of all words compared to the number of different words. Further the number of 
speakers is also significantly bigger then in the weather part of the database. The news data 
is also very rich in different background noises, including music, it also contains 
commercials, reports in foreign languages and so on. All of this features where captured and 
annotated during the transcription. The transcribed part of TV News consists of 18632 
words where 9326 are different. The transcribed part of TV News is 3 hours and 28 minutes. 
long.  Statistics of TV News is also shown in the bottom part of Table 1. 
 

 Number Speakers Words Dur. 
 Reports Utts. Male Fem. All Diff. [min] 

Radio weather 
forecasts 1057 5456 11 14 77322 1462 482 

Radio news 237 3975 1 2 105678 9923 294 
Overall RADIO  1294 9431 11 14 183000 10227 775 

Teleph. weather 
reports 170 3276 5 7 52430 1788 360 

BCN 6 280 217 18632 9326 208 
Overall  1470 12987 253 254062 15998 1343 

Table 1. Croatian speech corpus statistics. 

2.1 Data acquisition and transcription 
The broadcasted radio news with weather forecasts and telephone weather reports were 
recorded four times a day using a PC with an additional Haupage TV/Radio card. The 
speech signals are sampled with 16 kHz and stored in a 16-bit PCM encoded waveform 
format. At the same time texts of weather forecasts for each day were collected from the web 
site of the Croatian Meteorological Institute. The texts were used for speech transcription 
and for training of a bigram language model for the weather forecast speech recognition 
system. For the telephone weather reports and daily news no adequate text existed so the 
whole transcription process was manual. The transcribing process involved listening to 
speech until a natural break was found. The utterances or parts of speech signals were cut 
out and a word level transcription file was generated. The speech file and the transcription 
file have the same name with different extensions. 
During the transcription some basic rules were followed: all numbers and dates were 
textually written, all acronyms and foreign names were written as pronounced and not as 
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spelled and all other words were written according to the Croatian writing rules (Anić and 
Silić, 2001). Word transcriptions of TV news have been done in two stages. In the first stage 
we collected texts from TV NEWS at the internet site of the national TV (HTV). The texts 
were not the exact transcriptions and we had to correct them, but they were a good start.  
All final transcriptions of Croatian BCN (Broadcast News) were made with the Transcriber 
tool (Barras, et al., 2000). Transcriber is a tool for assisting in the creation of speech corpora 
enabling manual segmentation and transcription as well as annotation of speech turns, topic 
and acoustic condition. The data format follows the XML standard with Unicode support for 
multilingual transcriptions (Graff, 2000).  

2.2 Phonetic dictionary 
For the word segmentation and recognition task we have developed a phonetic dictionary, 
where we proposed a set of phonetic symbols to transcribe the words from the Croatian 
speech database. The selected symbols are derived according to the Speech Assessment 
Methods Phonetic Alphabet (SAMPA) (SAMPA, 1997). The standard phoneme set includes 
30 phonemes, where the set of vowels is extended with the vibrant vowel /r/. 
Croatian orthographic rules are based on the phonological-morphological principle which 
enables automatisation of phonetic transcription. Standard definition of orthographic to 
phonetic rules, one grapheme to one phonetic symbol was extended with additional rules 
for example: 
- words with group ds were phonetically transcribed as [ c ] and  
- words with suffixes naest were phonetically transcribed as [n a j s t]. 
The phonetic dictionary comprises all words in transcription texts. All word forms (different 
cases, genders and numbers of the same basic word form) are considered as a new word in 
the dictionary. The current phonetic dictionary contains 15998 different words. The fact that 
Croatian language is highly flective reflects to the size of the phonetic dictionary. The 
dictionary can contain few entries for the same basic word format. For example the word 
bura, which denotes the northern wind type, is represented by 4 different word forms: bura, 
bure, burom, buru. Since all foreign names were written as pronounced there was no need 
for writing the orthographic to phonetic rules for languages like English, German, Italian, 
Chinese, Arab, etc.  
The accent position is embedded in the dictionary with differentiation between accented 
and non–accented vowels. For the words that can be pronounced in more correct ways the 
position of the really accented vowel was marked.  

2.3 Segmentation 
Since the transcription of the speech files is on the word level for the training procedures the 
utterances have to be segmented on the phone level. The initial segmentation is performed 
using automatic alignment of speech signals and word transcriptions, which is based on 
hidden Markov monophone models. The automatic segmentation is performed using the 
monophone speech recognizer described in section 3. 
Typical segmentation errors detected during manual inspections of automatically 
determined speech segments can be roughly classified as transcription errors and real 
segmentation errors. Similar automatic segmentation error taxonomy for English is 
presented in (Kominek, et al., 2003). 
Transcription errors are errors in the speech transcription stage of speech corpora 
development. Some words or special acoustic events were incorrect or inaccurate typed or 
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were not typed at all.  For example if breathing noise (inspiration) was not marked in the 
textual transcription in a utterance, the whole inspiration was segmented as a really long 
phoneme. 
Real segmentation errors occurred when transcriptions were correct but the segment 
interval was not determined correctly. Typical segmentation errors occurred:  
- at infrequent phones like /lj/ or /dž/,  
- at two following vowels which are seldom in Croatian words like /ea/ and  
- at too tightly segmented phones combinations where one of the phones was not 

pronounced like /ije/.  
Automatically segmented speech utterances were manually inspected and segmentation 
errors were corrected in the speech database. 

3. Acoustic and language modelling 
The goal of speech recognition system is to recognize the spoken words represented by a 
stream of input feature vectors calculated from the acoustic signal. The major problems in 
continuous speech recognition arise due to the nature of spoken language: there are no clear 
boundaries between words, the phonetic beginning and ending are influenced by 
neighbouring words, there is a great variability in different speakers speech: male or female, 
fast or slow speaking rate, loud or whispered speech, read or spontaneous, emotional or 
formal and the speech signal can be affected with noise. To avoid these difficulties the data 
driven statistical approach based on large quantities of spoken data is used (Furui et al., 
2006). Statistical pattern recognition and segmentation algorithms and methods for 
stochastic modelling of time varying speech signals are used (Rabiner et al., 1989; Huang et 
al., 2000; Duda et al., 2001). Additionally statistical language models are used in order to 
improve the recognition accuracy (Jelinek et al., 1999).  
The data driven statistical approach uses hidden Markov models (HMM) as the state of the 
art formalism for speech recognition. Hidden Markov models are stochastic finite-state 
automata consisting of finite set of states and state’s transitions. The state sequence is 
hidden, but in each state according to the output probability function an output observation 
can be produced.  
The HMM Φ is defined by a triplet Φ=(A,B,Π) where A is state transition probability matrix, 
B is speech signal feature output probability matrix and Π is the initial state probability 
matrix. The output probability density function is represented by a mixture of Gaussian 
probability density function bj(x)=N(x,μjk,Σjk) (Huang et al., 2000) 

 
1 1

( ) ( , , ) ( )
M M

j jk jk jk jk jk
k k

b x c N x c b xμ
= =

= Σ =∑ ∑  for  j = 1..N and t = 1..T,  (1)  

where  
x         is the speech signal feature vector, 
bj(x)   is a Gaussian probability density function associated with state sj, 
μjk    is mean vector of the kth mixture in state sj,  
Σjk    is covariance matrix of the kth mixture in state sj  
M   is the number of mixture components and  
cjk      is the weight for the kth mixture in state sj satisfying the condition:  
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For the estimation of continuous HMM parameters iterative Baum-Welch procedure is used. 
The in Baum-Welch also known as the Forward-Backward algorithm iteratively refines the 
HMM parameters by maximizing the likelihood of a speech signal feature sequence X given 
a HMM Φ, P(X|Φ). The algorithm is based on the optimisation technique used in the EM 
algorithm for the estimation of Gaussian mixture densities parameters. The Baum-Welch 
algorithm uses iteratively forward and backward probabilities which define the probability 
of the partial observation sequence Xt at time t in state i, given the HMM Φ (Duda et al., 
2001; Huang et al., 2000).  
For the search of an optimal path in the HMM network of acoustic models the Viterbi 
algorithm is used (Rabiner, 1989). Viterbi algorithm is a dynamic programming algorithm 
that decodes the state sequence according to the observed output sequence.  
For speech modelling and recognition the speech signal feature vectors consist of 12 mel-
cepstrum coefficients (MFCC), frame energy and their derivatives and acceleration 
coefficients. The feature coefficients were computed every 10 ms for a speech signal frame 
length of 20 ms. 
Figure 1 presents main steps performed in the Croatian speech recognition system 
development, where acoustic and language models are trained. The speech signal is 
parameterized with MFCC feature vectors and their dynamic components, where the 
spectral resolution of the human ear is modelled. Speech transcriptions and speech signal 
feature vectors are used to train parameters of the monophone HMMs. The automatic 
segmentation is performed using monophone HMMs. The results of automatic 
segmentation are time intervals for each spoken phone. The automatically segmented 
phones are used for training (estimating) the parameters of monophone HMMs by repeating 
the Baum-Welch re-estimation procedure. The training procedure is repeated for each 
increase of the Gaussian mixture component. The triphones are constructed from 
monophones in a way that each triphone has in the left and in the right context the 
preceding and the succeeding phone. The triphone HMMs are constructed from monophone 
HMMs and the parameters are estimated with the Baum-Welch procedure. 
The triphone states with estimated parameters value are tied according to the proposed 
Croatian phonetic rules. The state tying procedure insures enough acoustic material to train 
all context dependent HMMs and enables acoustic modelling of unseen acoustic units, that 
are not present in the training data. The parameters of tied triphone HMMs are estimated by 
repeating the Baum-Welch re-estimation procedure and by increasing the number of 
Gaussian mixtures. The prepared textual transcriptions of speech utterances and phonetic 
dictionary are used to build a bigram language model. The triphone HMMs and bigram 
language model are used for Croatian speech recognition. 
The acoustic model should represent all possible variations in speech. Variations in speech 
can be caused by speaker characteristics, coarticulation, surrounding acoustical conditions, 
channel etc. Therefore selection of an appropriate acoustic unit, which can capture all speech 
variations, is crucial for acoustic modelling. Enough acoustic material should be available 
for HMMs modelling of chosen acoustic unit. At the same time the chosen acoustic unit 
should enable construction of more complex units, like words (Odell, 1995). In continuous 
speech recognition systems the set of acoustic units is modelled by a set of HMMs. Since the 
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Fig. 1. Development of the Croatian speech recognition system. 

number of units is limited (by the available speech data) usually the subword acoustic units 
are modelled. The subword units are: monophones, biphones, triphones, quinphones 
(Gauvain & Lamel, 2003; Lee et al., 1990) or sub phonemic units like senones (Hwang et al., 
1993). Some speech recognition systems are modelling syllables (Shafran & Ostendorf, 2003) 
or polyphones (Schukat-Talamazzini, 1995). All these units are enabling construction of the 
more complex units and recognition of the units not included in the training procedure 
(unseen units). 
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3.1 Context independent acoustic model 
The training of speech recognition acoustic models started with defining the Croatian 
phoneme set according to SAMPA (SAMPA, 1997). For each of 30 Croatian phonemes a 
context independent monophone hidden Markov model was defined. Initially the 
monophone models with continuous Gaussian output probability functions described with 
diagonal covariance matrices were trained. Each monophone model consists of 5 states, 
where the first and last states have no output functions. The initial training of the Baum-
Welch algorithm on HMM monophone models resulted in a monophone recognition 
system, which was used for the automatic segmentation of the speech signals. The automatic 
segmentation of the speech signal to the phone level is performed using the forced 
alignment (Young et al., 2002) of the spoken utterance and the corresponding word level 
transcriptions. The results of automatic segmentation are exact time intervals for each 
phone. Further, the monophone models were trained by 10 passes of the Baum-Welch 
algorithm and the resulted monophone models were used for the initialization of context 
dependent triphone hidden Markov models. The number of mixtures of output Gaussian 
probability density functions per state was increased up to 20.  

3.2 Context dependent acoustic model 
The triphone context-dependent acoustic units were chosen due to the quantity of available 
speech and possibility for modelling both, left and right, coarticulation context of each 
phoneme. We trained context-dependent cross-words triphone models with continuous 
density output functions (up to 20 mixture Gaussian density functions), described with 
diagonal covariance matrices. The triphone HMMs consist of 5 states, where the first and 
last states have no output functions.  
Table 2 shows the number of cross-word seen triphones in the training data used for radio 
speech recognition training. Evidently there was not enough acoustical material for 
modelling all possible triphone models. The severe under training of the model can be a real 
problem in the speech recognition system performance (Hwang et al., 1993). The lack of 
speech data is overcome by a phonetically driven state tying procedure. 
 

 No. No. triphones % 
 monophones possible all seen seen 

radio weather 29+4 35937 31585 4042 12.80% 
radio news 30+4 39304 36684 7931 21,62% 
telephone 29+4 35937 31585 4618 14.62% 

Table 2. The number of monophones and triphones and seen triphones percentage per parts 
of the speech corpus. 

3.3 Croatian phonetic rules and decision trees 
The state tying procedure proposed in (Young et al., 1994) allows classification of unseen 
triphones in the test data into phonetic classes and tying of the parameters for each phonetic 
class. In our system 108 phonetic rules (216 Croatian phonetic questions about left and right 
context (Martinčić-Ipšić & Ipšić, 2006a)) are used to build phonetic decision trees for HMM 
state clustering of acoustic models. The phonetic rules are describing the classes of the 
phonemes according to their linguistic, articulatory and acoustic characteristics. A phonetic 
decision tree is a binary tree, where in each node the phoneme’s left or right phonetic 
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context is investigated. The phonemes are classified into phonetic classes depending on the 
phonetic rules which examine the phoneme’s left and right context. Some Croatian phonetic 
rules used for the training of phonetic classes are shown in Table 3. 
 

 Vowel a, e, i. o, u 
High Vowel i, u 

Medium Vowel o, e 
Back k, g, h, o, u 

Affricate c, C, cc, dz, DZ 
Velar k, g, h 
Glide j, v 

Apical t, d, z, s, n, r, c, l 
Strident v, f, s, S, z, Z, c, C, DZ 

Constant Consonant v, l, L, j, s, S, z, Z, f, h 
Unvoiced Fricative f, s, S, h 

Compact Consonant N, L, j, S, Z, C, cc, dz, DZ, k, g, h 

Table 3. Examples of Croatian phonetic classes. 
Figure 2 presents an example of phonetic decision tree for Croatian phoneme /h/. It classifies 
triphones with the phoneme /h/ in the middle in eight possible classes. At each node the 
binary question (from the set of 108 phonetic rules) about left and right context is asked and 
YES/NO answers are possible. The triphones in the same class are sharing the same 
parameters (state transition probabilities and output probability density functions of HMMs).  
 

Is on the left back vowel?

Is on the right vowel?Is on the left high vowel?

NO YES

NO YESNO YES

Is on the left constant consonant? Is on the right unvoiced fricative ?

Is on the left compact consonant?

Is on the left consonant?

NO NOYES YES

NO YES

NO YES

/h/

 
Fig. 2. The decision tree of phonetic questions for the left and right context of phoneme /h/. 
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For the construction of the phonetic decision tree from phonetic rules and from parameters 
of triphone HMM states a state tying procedure proposed in (Young et al., 1994) is used. 
Tying enables clustering of the states that are acoustically similar, which allows all the data 
associated with one state to be used for more robust estimation of the model parameters. 
This enables more accurate estimating mixtures of Gaussian output probabilities and 
consequently better handling of the unseen triphones.  
For each phoneme a decision tree is built using a top-down sequential optimization 
procedure (Odell, 1995). Initially all states are placed in the root node. So, all states are 
initially tied together and log likelihood is calculated for this node. The tying procedure 
iteratively applies phonetic rules to the states of the triphone models and partitions the 
states into subsets according to the maximum increase in log likelihood. When the threshold 
is exceeded the tied states are no further partitioned. 
State tying enables clustering of the states that are acoustically similar, which allows all the 
data associated with one state to be used for more robust estimation of the model 
parameters (mean and variance). This enables more accurate estimation of Gaussian 
mixtures output probabilities and consequently better handling of the unseen triphones.  
For the speech recognition task the state clustering procedure uses a separate decision tree 
for initial, middle and final states of each triphone HMM which is built using a top-down 
sequential sub-optimal procedure (Odell, 1995). Initially all relevant states are placed in the 
root node. So, all states are initially tied together and log likelihood is calculated for this 
node. The tying procedure iteratively applies phonetic rules to the states of the triphone 
models and partitions the states into subsets according to the maximum increase in log 
likelihood. When the threshold is exceeded the tied states are no further partitioned. 
For a set S of HMM states and a set F of training vectors x the log likelihood L(S) is 
calculated according to (Young et al., 1994) by  

 
1 1

( ) log( ( , ( ), ( ))) ( )
F S

f s f
f s

L S P x S S xμ ξ
= =

= Σ∑∑ ,  (3) 

where P(xf,μ(S),Σ(S)) is the probability of observed vector xf in state s under the assumption 
that all tied states in the set S share a common mean vector μ(S) and variance Σ(S). ξs(xf) is 
the posterior probability of the observed feature vector xf in state s and is computed in the 
last pass of the Baum-Welch re-estimation procedure (Young et al., 2002). 
The node with states from S is partitioned into two subset Sy and Sn using phonetic question 
Q which maximizes the ΔL: 

 ΔL=L(Sy) + L(Sn) – L(S),  (4) 

where Sy is set of states which are satisfying the investigated phonetic question Q and in the 
Sn set are the rest of the states. Further the node is split according to the phonetic question 
which gives the maximum increase in log likelihood. The procedure is then repeated until it 
exceeds the threshold. The terminal nodes share the same distribution so the parameters of 
the final nodes can be estimated accurately, since the tying procedure provides enough 
training data for each final state. 
The state tying procedure is presented in figure 3. From the top first is shown a monophone 
HMM for phoneme /h/. At the second level are HMMs for triphones o-h+r, e-h+a and a-
h+m. Then the triphone states where tied and states sharing the same parameters are 
clustered using the phonetic decision trees. And at the bottom are the same tied states with 
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increased number of mixtures of Gaussians probability functions evaluated by the Baum-
Welch parameter reestimation procedure. 
 

h

o-h+r e-h+a a-h+m

o-h+r e-h+a a-h+m

o-h+r e-h+a a-h+m

 
Fig. 3. The state tying procedure for the triphones with /h/ in the middle. 
Table 4 contains the most frequently used Croatian phonetic questions in the phonetic decision 
trees in the speech recognition systems. Phonetic questions in the table are abbreviated. For 
instance the R-Front is the abbreviated phonetic question: Is the phoneme in the right context 
from the articulatory class front? Phonetic questions are ranked according to the appearance 
frequency in the decision trees. For the speech recognition part the frequency is calculated over 
3 different sets of phonetic trees with different number of tied states (clusters).  
 

Radio speech Telephone speech 
Phonetic question No. Phonetic question No.
R_Front 811 R_Front 522 
L_Front 797 L_Front 498 
L_Vowel-Open 635 L_Central 348 
L_Central 594 R_Vowel-Open 336 
R_Vowel-Open 561 R_Central 312 
L_Consonant-Voiceless 432 L_Vowel-Open 312 
R_Vowel 384 L_Consonant-Voiceless 222 
R_Consonant-Voiceless 357 R_Vowel 221 
D_Central 355 D_Consonant-Voiceless 216 
L_Nasal 338 L_Consonant-Closed 201 

Table 4. The most frequently used Croatian phonetic questions in radio and telephone 
speech recognition. 
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As expected and reported for other languages (Gauvain & Lamel, 2003) the most common 
Croatian phonetic rules (front, central, vowel) are the most frequently used for phonetic 
clustering in the speech recognition system. Since the results are presented for left and right 
coarticulation context and for the stable part of the phoneme, the phonetic rules are in left-
question, right-question pairs. Phonetic questions investigating the presence of the single 
phoneme in the coarticulated context are the less frequent one, and used only in phonetic 
trees with higher number of tied states.  

3.4 Language modelling 
Language model is an important part of the speech recognition system. The language model 
estimates the probabilities of word sequences which are derived from manual transcriptions 
of the speech database and from normalized text corpora. In this work statistical language 
model was used (Jelinek, 1999). N-gram statistical language models are modelling the 
probability P(W) for the sequence of words W=w1,w2,..,wn 

 1 2 1
1

( ) ( | , ,.., )
n

i i
i

P W P w w w w −
=

=∏   (5) 

where P(wi|w1,w2,..,wi-1) is probability that word wi follows the word sequence w1,w2,..,wi-1.  
Since the weather domain corpus contains a limited amount of sentences a bigram language 
model is used to approximate P(W). The probability of the word wi after word wi-1 in a 
bigram language model is calculated by 
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−
−

−

=   (6)  

where:  
N(wi-1,wi)   is the frequency of the word pair (wi-1,wi),  
N(wi-1)       is the frequency of the word wi-1. 
One major problem with standard N-gram models is that they are estimated from some 
corpus, and because any particular training corpus is finite, some perfectly acceptable N-
grams are bound to be missing from it (Jurafsky & Martin, 2000). To give an example from 
the domain of speech recognition, if the correct transcription of an utterance contains a 
bigram wi-1wi that has never occurred in the training data, we will have p(wi|wi-1)=0 which 
will preclude the recognition procedure from selecting the correct word sequence, 
regardless of how unambiguous the acoustic signal is.  
Smoothing is used to address this problem. The term smoothing describes techniques for 
adjusting the maximum likelihood estimate of probabilities to produce more accurate 
probabilities. These techniques adjust low probabilities such as zero probabilities upward, 
and high probabilities downward. Not only do smoothing methods generally prevent zero 
probabilities, but they also attempt to improve the accuracy of recognition. 
Perplexity of the language model represents the branching factor of the number of possible 
words branching from a previous word. Perplexity PP is defined as:  

 ( )2H LPP =  (7) 

where H(L) represents the entropy of the language and is approximated by:  
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where P(w1,w2,..,wn) is probability of the word sequence w1,w2,..,wn, and n is the number of 
words in a sequence.  
In all experiments bigram language model was used. Estimated perplexity of the radio part 
of the speech database bigram language model is 11.17 for weather domain and 17.16 for the 
news domain and perplexity of the telephone part of speech database is 17.97. 

4. Experiments and results  
The word recognition procedure computes the word sequence probability using the Viterbi 
search in the network of word hidden Markov models and a bigram language model. Word 
models are constructed from triphone models as shown in figure 4. Additional models for 
silence, breath noise, paper noise and restarts are used. 
All word models are concatenated in parallel and form a single Hidden Markov Model, 
which is represented by a huge network of nodes. The analysis of an unknown observation 
sequence is performed by the Viterbi algorithm, producing the maximum a posteriori state 
sequence of the model with respect to the observed input vectors. Knowing the state 
sequence of the HMM we can decode the input sequence and transform it into a string of 
words. Because of the large number of states which have to be considered when computing 
the Viterbi alignment, a state pruning technique has to be used to reduce the size of the 
search space. We use the Viterbi beam--search technique which expands the search only to 
states which probability falls within a specified beam. The probability of reaching a state in 
the search procedure cannot fall short of the maximum probability by more than a 
predefined ratio. During the forward search in the HMM N best word sequences are 
generated using acoustic models and a bigram language model. 
 

/-a+/

/-b+/

/-z+/

...............

/-a+/ /-u+/

......
/-o+/

 
Fig. 4. Word models construction from triphone models. 
So far we have performed speech recognition experiments using the radio speech database. 
The speech database contains weather forecast and news recordings. One part of the 
database (71%) was used for acoustic modelling and parameter estimation of context 
dependent phone models, while a smaller part (29%) of the database was used for 
recognition. All results are given for speaker independent recognition (2 male and 4 female 
speakers). 
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Speech recognition results for context-independent and context-dependent speaker 
independent recognition of the “clean” radio and noisy telephone speech are presented in 
tables 5 and 6 respectively. Word error rate (WER) results are given for 20 Gaussian 
mixtures. WER is computed according to: 

 1 0 0 % S D IW W WW E R
N

+ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

,  (9) 

where WS, WD and WI are substituted, deleted and inserted words, while N is the total 
number of words. WS, WD and WI are computed using the Levenshtein distance between the 
transcribed and recognized sentences.  
The increase of the acoustic material in Croatian radio speech recognition resulted with 
1.68% decrease of WER. Since the access to the weather information spoken dialog system is 
planned by telephone, the WER for the telephone data is quite promising. The word error 
rate for telephone data must be bellow 20% which will be achieved by incorporating more 
telephone speech in the acoustical model training procedure. And finally both recognition 
systems performed better when the number of tied states was reduced (using the same 
phonetic rules) and the number of Gaussian mixtures increased which indicates that more 
speech should be incorporated in the training of both recognizers for the use in the spoken 
dialog system. 
 

 RADIO TELEPHO. 
 weath. forec. news weath. repor. 

Duration [h] 8 13 6 
No. words trained 1462 10230 1788 

No. words recognized 1462 1462 1788 
perplexity 11.17 17.16 17.97 

No. Gauss. mix % WER %WER %WER 
1 18.7 18.49 30.41 
5 13.35 13.13 25.21 
10 11.57 11.36 23.18 
15 11.11 10.91 22,52 
20 10.54 10.58 21.76 

Table 5. Croatian speech recognition results: WER computed using monophone HMMs with 
different number of Gaussian mixtures. 
 

 RADIO TELEPHO. 
 weath. forec. news weath. repor.

No. Gauss. mix % WER %WER %WER 
1 17.27 14.69 27.16 
5 12.76 10.63 21.82 
10 11.28 9.56 20.83 
15 11.02 9.20 20.49 
20 10.61 8.93 20.06 

Table 6. Croatian speech recognition results: WER computed using triphone HMMs with 
different number of Gaussian mixtures. 
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Graphs in figures 5 and 6 show the word accuracy for monophone and triphone Croatian 
speech recognition for radio and telephone speech for different numbers of Gaussian 
mixtures. Word accuracy WA is computed according to: 

 100% 1 S D IW W WWA
N

+ +⎛ ⎞= −⎜ ⎟
⎝ ⎠

,  (10) 

The presented recognition results are obtained using 553 tied states for ‘clean’ radio speech 
and 377 tied states for telephone speech. Further increase of Gaussian mixture did not 
increase the accuracy since the speech material is not big enough and a great number of 
triphones are not present in the training data. 
 

 monophone speech recognition   

80.00 
82.00 
84.00 
86.00 
88.00 
90.00 
92.00 
94.00 

1mix 2mix 3mix 4mix 5mix 6mix 7mix 8mix 9mix 10mix 

radio  speech 

telephone speech

 
Fig. 5. Word accuracy using monophones for radio and telephone speech. 
 

 triphone speech recognition  

84.00 
86.00 
88.00 
90.00 
92.00 
94.00 
96.00 

1mix 3mix 5mix 7mix 9mix 11mix 13mix 15mix 17mix 19mix

radio speech 

telephone speech

 
Fig. 6. Word accuracy using triphones for radio and telephone speech. 
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5. Conclusion  
In the paper we described the context-dependent acoustic modelling of Croatian speech in 
the speech recognition system. An application specific Croatian speech corpus and Croatian 
phonetic rule were used for context-dependent hidden Markov models based speech 
recognition. Presented speech recognition system for radio and telephone data is planed for 
use in the Croatian weather information spoken dialog system. 
Speech recognition experiments using context-independent and context-dependent acoustic 
models were prepared for “clean” radio and for noisy telephone speech. The WER for the 
radio weather domain is reduced to 10.61% by increasing the number of Gaussian mixtures. 
The radio speech WER was further reduced to 8.93% by adding the news related speech into 
acoustical modelling. For the telephone speech 20.06% WER was achieved. The achieved 
results for telephone speech recognition are promising for further actions in development of 
the dialog system.  
In this work we have shown that the approach for speech recognition using context-
dependent acoustical modelling is appropriate for rapid development of limited domain 
speech applications for low-resourced languages like Croatian. Croatian orthographic-to-
phonetic rules are proposed for phonetic dictionary building. The developed Croatian 
multi-speaker speech corpus was successfully used for development of speech applications. 
Proposed Croatian phonetic rules captured adequate Croatian phonetic, linguistic and 
articulatory knowledge for state tying in acoustical models for the speech recognition 
system. Main advantage of the used approach lies in the fact that speech applications can be 
efficiently and rapidly ported to other domains of interest under the condition that an 
adequate speech and language corpus is available. 
Since the telephone access to the spoken dialog system is planed, further improvements in 
speech recognition must be considered. Additionally work on including more speech 
especially spontaneous speech from different speakers in the corpus is in progress. Further 
research activities are also planed towards development of the speech understanding 
module in the dialog system and the speech synthesis module. 
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1. Introduction 
This chapter will present the results of the research and development of speech technologies 
for Serbian and other kindred South Slavic languages used in five countries of the Western 
Balkans, carried out by the University of Novi Sad, Serbia in cooperation with the company 
AlfaNum. The first section will describe particularities of highly inflected languages (such as 
Serbian and other languages dealt with in this chapter) from the point of view of speech 
technologies. The following sections will describe the existing speech and language 
resources for these languages, the automatic speech recognition (ASR) and text-to-speech 
synthesis (TTS) systems developed on the basis of these resources as well as auxiliary 
software components designed in order to aid this development. It will be explained how 
the resources originally built for the Serbian language facilitated the development of speech 
technologies in Croatian, Bosnian, and Macedonian as well. The paper is concluded by the 
directions of further research aimed at development of multimodal dialogue systems in 
South Slavic languages. 

1.1 Particularities of highly inflected languages 
The complexity of a number of tasks related to natural language processing is directly 
related to the complexity of the morphology of the language. The principal feature of 
inflective languages is that words are modified in order to express a wide range of 
grammatical categories such as tense, person, number, gender and case. Together with a 
high degree of derivation with the use of prefixes and suffixes typical for such languages, 
this results in extremely large vocabularies. As a consequence, statistically oriented 
language models (based on N-grams), which are quite successful in modelling languages 
with a modest degree of morphological complexity, turn out to be inadequate for use for 
morphologically more complex languages without significant modifications (Jurafsky & 
Martin, 2000).  
The problem affects both automatic speech recognition and text-to-speech synthesis. In the 
case of ASR, extremely large vocabularies require the existence of extremely large corpora 
for obtaining robust N-gram statistics. For instance, a corpus of English containing 250.000 
tokens actually contains approximately 19.000 types (Oravecz & Dienes, 2002), while a 
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corpus of Serbian of the same size contains approximately 46.000 types (Sečujski, 2009). 
Furthermore, the rate of out-of-vocabulary (OOV) words is also much higher in case of 
morphologically rich languages. A number of solutions to this problem have been proposed, 
mostly based on modelling the statistics of subword units instead of words. Some of the 
proposed solutions even target South Slavic languages (Sepesy Maučec et al., 2003), 
however, none of them results in a system of an accuracy sufficient for its practical usability.  
The impact of the problem with respect to TTS is related to the difficulty of accurate high-
level synthesis. For the text to be delivered to the listener as intelligible and natural-
sounding speech, it has to be pre-processed, and most of the activities included require 
some kind of estimation of robust statistics of the language, as it will be explained in more 
detail in the following sections. As was the case with ASR, the size of the vocabulary leads 
to data sparsity, resulting in the need for significantly greater corpora sufficient for 
obtaining a language model of the same robustness in comparison to languages with a 
simpler system of morphological categories. 
When the four South Slavic languages used in the Western Balkans (namely: Serbian, Cro-
atian, Bosnian, Macedonian) are examined, it can be seen that they exhibit extreme simi-
larities at levels ranging from phonetic and morphological to syntactic and semantic. With 
the exception of Macedonian, all these languages have until recently been considered as 
variants of a single language (Serbo-Croatian). Owing to this fact, tools and procedures used 
for development of most of the resources originally developed for Serbian (including a 
morphological dictionary (Sečujski, 2002), a morphologically annotated corpus (Sečujski, 
2009) and an expert system for part-of-speech tagging (Sečujski, 2005)) were re-used to 
develop corresponding resources for the other languages. In some cases it was possible to 
easily create the resources for the other languages by simple modification of existing re-
sources for Serbian, as will be explained in more detail in the following sections. 

2. Text-to-Speech 
This section will describe AlfaNum TTS, the first fully functional text-to-speech synthesiser 
in Serbian language, which has been adapted to Croatian, Bosnian and Macedonian as well. 
It is constantly being improved by introducing novel techniques both at high and low 
synthesis level (Sečujski et al., 2007). 
The high-level synthesis module includes processing of text and its conversion into a 
suitable data structure describing speech signal to be produced. The output of the high-level 
synthesis module is a narrow phonetic transcription of the text, containing the information 
on the string of phonemes/allophones to be produced as well as all relevant prosody 
information, such as f0 movement, energy contour and temporal duration of each phonetic 
segment. The principal modules of a high-level synthesis module are given in Fig. 1. 

2.1 High-level synthesis 
The text preprocessing module is charged with conversion of text into a format more 
suitable for text analysis. The text to be preprocessed is usually in a plain format, not even 
tagged for ends of sentences, and it is up to the sentence boundary detection module to locate 
sentence boundaries, which is the first stage of preprocessing. Most practical systems use 
heuristic sentence division algorithms for this purpose, and although they can work very 
well provided enough effort was put in their development, they still suffer from the same 
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Fig. 1. An overview of the high-level speech synthesis module. 

problems of heuristic processes in general – they require a lot of hand-coding and domain 
knowledge on the part of the person developing the module. Besides neural networks and 
maximum entropy models, the framework of statistical classification trees can also be 
effectively used for this purpose, as was first shown in (Riley, 1989). Furthermore, it can be 
made more powerful by introduction of specialised linguistically motivated features in tree 
construction. Although the sentence boundary detection module currently used within the 
AlfaNum TTS system (Sečujski et al., 2002) is a purely heuristic one, development of a tree-
based classifier for sentence boundary detection is under way. Further preprocessing stages 
include conversion of a long string of characters (including whitespaces) into lists of words. 
Texts, however, do not consist of orthographic words only, and all non-orthographic 
expressions have to be expanded into words. The preprocessor is thus also charged with 
processing of punctuation marks, handling acronyms and abbreviations and transcribing 
numbers into literals. Each of these problems represents a highly language-dependent 
research area. All of the preprocessing modules currently used by the AlfaNum TTS system 
for these purposes are of heuristic nature. 
Another source of problems is that the surface form of a word is not always a sufficient 
source of information as to how the word should be read. There is a number of morpho-
logical and syntactical ambiguities to be resolved for the word to be read correctly. The 
critical properties of each word from the point of its conversion into speech are its phonetic 
transcription as well as the position of accent(s) within it. In the case of all of the afore-
mentioned languages the task of phonetisation is (nearly) trivial, as in each of them one let-
ter basically corresponds to one sounds. The phonology of these languages is rather com-
plex as there are numerous interactions between phonemes at morpheme boundaries, 
however, almost all of these interactions are reflected in writing as well, and thus do not 
represent a problem as regards TTS. On the other hand, from the point of view of stress 
position and type, the situation is less favourable. For example, Serbian, Croatian and 
Bosnian have an extended system of accentuation, which, from the phonological point of 
view, has four accents divided into two groups according to their quantity and quality: long-
fall, short-fall, long-rise and short-rise, their exact realisation varying according to vernacular. 
Assigning an erroneous accent to a word would affect speech perception to the point that 
sometimes a completely different meaning would be perceived from the utterance. The 
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accentuation of Macedonian is somewhat simpler. Besides recent loanwords, word stress in 
Macedonian is antepenultimate, which means that it falls on the third from last syllable in 
words with three or more syllables, and on the first syllable in other words. Thus, in most 
cases, reasonably correct pronunciation of a word does not require its full morpho-syntactic 
disambiguation.  
In general, most of the morpho-syntactic disambiguation required for correct rendering of a 
word is done through part-of-speech (POS) tagging (although in the case of all of the afore-
mentioned languages there is an occasional dependence of accent type or position on syntax 
as well). Within the POS tagging procedure, each word has to be assigned some specific 
additional information related to its morphological status, contained in a unique morpho-
logical descriptor or part-of-speech (POS) tag. In case of languages with complex morpho-
logy, such tags usually have specified internal structure, and their total number (tagset size) 
is much larger than in case of languages with simpler morphology (Hajič & Hladká, 1998). 
This, in turn, leads to the well-known problem of data sparsity, i.e. the fact that the amount 
of training data necessary increases rapidly with tagset size, making highly accurate part-of-
speech taggers for such languages extremely hard to obtain. Whichever of the statistical 
tagging techniques is used, a number of modifications become necessary when dealing with 
highly inflective or agglutinative languages (Jurafsky & Martin, 2000). The AlfaNum TTS 
system performs POS tagging by using a technique that is based on performing a beam-
search through a number of partial hypotheses, evaluating them with respect to a database 
of linguistic rules (Sečujski, 2005). The basic set of rules were hand-coded, however, the 
database has since been significantly augmented using a transformational-based tagger. 
For any partial hypothesis to be considered, the system must know the possible tags for each 
surface form. However, they cannot be deduced from the surface form itself, which points to 
the conclusion that any strategy aiming at accurate POS tagging and accent assignment 
should rely on morphologically oriented dictionaries. 
Within this research, by using a software tool created for that purpose, the AlfaNum 
morphological dictionary of Serbian language was created, containing approximately 
100.000 lexemes at this moment, i.e. approximately 3.9 million inflected forms. The research 
described in this chapter also required that an extensive part-of-speech tagged text corpus 
be built. Within this research, by using another software tool created for that purpose, the 
AlfaNum Text Corpus (ATC) was created and part-of-speech tagged, containing approxi-
mately 11.000 sentences with approximately 200.000 words in total. Based on the same prin-
ciples, a Croatian dictionary of approximately the same size was subsequently developed. 
Owing to extreme similarities of Serbian, Bosnian and Croatian, the Serbian and Croatian 
dictionaries are jointly used for tagging of Bosnian, and instead of full tagging of Mace-
donian, only stress assignment is carried out, according to the rule of the antepenultimate 
syllable and a dictionary of exceptions containing approximately 44.000 types.  
Each entry in the AlfaNum morphological dictionary of Serbian, besides the morphological 
descriptor, also contains the data related to the accentuation of the word, as well as the 
lemma (base form), which is useful for lemmatisation. The term entry thus denotes a par-
ticular inflected form of a word, together with the corresponding lemma, values of part-of-
speech and morphological categories, as well as its accent structure (a string of characters 
denoting accent type associated to each syllable). An example of an entry would be: 

Vb-p-1-- uzećemo (uzeti) [\-00]. 
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Morphological categories that are marked are dependent on the part-of-speech, and thus e.g. 
verbs are marked for tense/mood, gender, number and person, but only in case a particular 
category is applicable to the tense/mood in question. The example above represents a verb 
(V) in 1st person (1) plural (p) of the future tense (b), whose surface form is uzećemo and 
whose base form is uzeti. The data related to accentuation are given in square brackets. In 
this way, all the inflected forms of words are present in the dictionary, and the task of part-
of-speech tagging of an unknown text amounts (in most cases) to the selection of the correct 
tag out of all possible tags provided by the dictionary, rather than actual morphological 
analysis of words. 
The dictionary was built in an efficient way using a software tool previously developed for 
that purpose (Sečujski, 2002). This tool is based on direct implementation of inflectional 
paradigms of the Serbian language, and its application enables efficient input of complete 
paradigms instead of individual entries. 
When all the possible tags are provided by the dictionary, it remains to select the correct 
one. As it would be impossible to consider all tag combinations separately, an algorithm 
similar to dynamic programming is used, keeping the number of partial hypotheses under 
control.  
Let us consider a sentence W = w1w2...wN. Each of the words wi has a corresponding tag list: 

 1 2{ , ,... },
ii i i iNT t t t=  (1) 

and its actual tag ti is one of the tij, j = 1, 2,... Ni. Initially only the hypotheses of length one 
are considered, containing only the first word of the sentence: 

 )}.(),...(),{(
1112111 NtttH =  (2) 

In every following step of the algorithm, each variant of the next word is combined with 
each of the existing partial hypotheses. A set of all possible hypotheses of length two is thus:  

 }....2,1,...2,1|),{( 21212 NnNmttH nm ===  (3) 

Each time a new word is appended in such a way, the score of each hypothesis is recalcu-
lated, based on the likelihood that a word with such a tag can follow. If the number of all 
hypotheses exceeds a previously set limit L, only L hypotheses with highest scores are 
retained, and all the others are discarded. The procedure continues until all words are 
included and the hypothesis with the highest score is selected as the estimate of actual tag 
sequence T = t1t2...tN. Fig. 2 shows an example of such analysis. The algorithm described 
here performs in time proportional to the length of the sentence, and one of its interesting 
features is that it produces partial results very quickly. The first word in the sentence is 
assigned its tag long before the analysis is over, which is consistent with the notion that, 
when reading a sentence, humans are usually able to start pronouncing it far before they 
reach its end, and that they organise the sentence into simple prosodic units which can be 
obtained from local analysis (Dutoit, 1999). Furthermore, this feature of the algorithm is 
especially useful from the point of view of speech synthesis, because synthesis of the speech 
signal can start as soon as the first partial results are obtained, which minimises the delay 
introduced by POS tagging.  
The initial criteria for actual scoring of the hypotheses are based on rules defined according 
to the statistics of different parts-of-speech in Serbian language and grammatical rules found 
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ADJ nom.sg.f.["00] / Nc nom.sg.f.[\00]
ADJ nom.sg.f.["00] / Vtr/ref pres.3p.sg.[0\0]
ADJ nom.pl.n.["00] / Vtr/ref pres.3p.sg.[0\0]
ADJ acc.pl.n.["00] / Vtr/ref pres.3p.sg.[0\0]
ADJ nom.pl.n.["00] / Nc nom.sg.f.[\00]
ADJ acc.pl.n.["00] / Nc nom.sg.f.[\00]
ADJ nom.pl.n.["00] / Nc gen.sg.f.["00]
ADJ nom.sg.f.["00] / Nc gen.sg.f.["00]
ADJ acc.pl.n.["00] / Nc gen.sg.f.["00]
ADJ voc.sg.f.["00]  / Vtr/ref pres.3p.sg.[0\0]
ADJ voc.pl.n.["00] / Vtr/ref pres.3p.sg.[0\0]
ADJ voc.sg.f.["00] / Nc nom.sg.f.[\00]

ADJ voc.pl.n.["00] / Nc nom.sg.f.[\00]
ADJ voc.sg.f.["00] / Nc gen.sg.f.["00]
ADJ voc.pl.n.["00] / Nc gen.sg.f.["00]

12
6
6
5
4
3
2
2
1
0
0

-2

-2
-4
-4

VELIKA
ADJ nom.sg.f.

`̀

VELIKA
ADJ voc.sg.f.

`̀

VELIKA
ADJ nom.pl.n.

`̀

VELIKA
ADJ acc.pl.n.

`̀

VELIKA
ADJ voc.pl.n.

`̀

GOMILA
Nc nom.sg.f.

`

GOMILA
Nc gen.sg.f.

`GOMILA
Vtr/ref pres.3p.sg.

KNJIGA
Nc nom.sg.f.

KNJÎGA
Nc gen.pl.f.

`̀

`̀

to be discarded

 
Fig. 2. An example of a step in the disambiguation algorithm for the sentence “Velika gomila 
knjiga stoji na stolu”. The diagram shows the situation after all the hypotheses of length two 
are considered, and three of them with lowest scores are to be discarded (in this example 
stack size limit is L = 12). 

in the literature. Further error-correcting rules have been discovered using the transfor-
mational-based part-of-speech tagger described in (Sečujski, 2009), and trained on indivi-
dual sections of the AlfaNum Text Corpus. The tagger is based on the general transfor-
mation-based learning paradigm (Brill, 1992), but enhanced with certain learning strategies 
particularly applicable to highly inflected languages (Sečujski, 2009). Both hand-coded and 
automatically obtained rules are created following standard templates such as: 
Award n points to a partial hypothesis h = (w1, w2,... wl): 
• If wl is tagged ti 
• If wl is tagged ti and wl–1 is tagged tj 
• If wk is tagged ti, wl–1 is tagged tj and wl–2 is tagged tk 
• If wl is tagged ti and wl–1 is tagged tj and the value of a morphologic category c con-

tained in the tag ti is the same (is not the same) as the value of the corresponding mor-
phologic category contained in the tag tj 

• If wl is tagged ti and wl–1 is tagged tj and all of the values of morphologic categories c1, 
c2,...ck contained in the tag ti are the same (are not the same) as the values of corres-
ponding morphologic categories contained in the tag tj 

where n is assigned depending on the technique used. 
After the (presumably) correct tag sequence has been discovered, the next step consists of 
modifying accent patterns to account for occasional dependence of accent type and/or 
position on syntax, as described previously, and performing syntactic-prosodic parsing of 
the sentence (detecting prosodic events such as major and minor phrase breaks, setting sen-
tence focus etc.). Both are currently done using heuristic algorithms, however, the develop-
ment of a tree-based classifier which would be in charge of the latter is under way. This 
classifier will be trained on sections of the AlfaNum Text Corpus which are annotated for 
minor and major phrase breaks as well as sentence focus. 
It remains to assign each word its actual prosodic features, such as durations of each 
phonetic segment as well as f0 and energy contours. In the version for the Serbian language, 
this is currently performed using regression trees trained on the same speech database used 
for speech synthesis. The section of the database used for training of regression trees is fully 
annotated with phone and word boundaries, positions of particular accent types and pro-
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sodic events such as major and minor phrase breaks and sentence focus. Separate regression 
trees are used for prediction of phonetic durations and for prediction of f0 and energy 
contours. Owing to this approach, actual acoustic realisation of each accent in synthesised 
speech is expected to correspond to the most common realisation of the same accent in a 
phonetically and prosodically similar context in the speech database. The listening experi-
ments carried out so far have confirmed the expectation that such an approach would lead 
to superior naturalness of synthetic speech in comparison with the previous version, which 
was based on heuristic assignment of predefined f0 and energy contours corresponding to 
particular accentuation configurations (Sečujski et al., 2002). The versions of the synthesiser 
for Croatian, Bosnian and Macedonian language still use the heuristic algorithm for prosody 
prediction, however, the Croatian synthesiser is expected to switch to regression-tree based 
prosody prediction soon, as prosodic annotation of the Croatian speech database is 
currently under way. As was the case with morphological dictionaries, significant expe-
rience in creation of other resources for the Serbian language will certainly contribute to 
efficient creation of appropriate resources for other kindred languages as well. 

2.2 Low-level synthesis 
The term low-level synthesis refers to the actual process of producing a sound that is sup-
posed to imitate human speech as closely as possible, based on the output of the high-level 
synthesis module described in the previous subsection. In all of the available versions of the 
system, the concatenative approach has been used as being the simplest and at the same 
time offering high intelligibility and reasonably high flexibility in modifying prosodic fea-
tures of available phonetic segments prior to synthesis (Sečujski et al., 2002).  
The AlfaNum R&D team has recently recorded a new speech database containing 10 hours 
of speech from a single speaker (instead of a 2.5 hour database previously used), and so far 
annotated approximately 3 hours of it using visual software tools specially designed for that 
purpose (Obradović & Pekar, 2000). By keeping score of the identity of each phone in the 
database and its relevant characteristics (such as the quality of articulation, nasalisation and 
vocal fry), use of phones in less than appropriate contexts was discouraged, which further 
contributed to overall synthesised speech quality. Unlike most other synthesisers developed 
for kindred languages so far, the AlfaNum TTS engine can use larger speech segments from 
the database, according to both phonetic and prosodic requirements, and select them at 
runtime in order to produce the most intelligible and natural-sounding utterance for a given 
plain text (Beutnagel et al., 1999). The full increase in synthesis quality is yet to come after 
the remaining 7 hours of speech are annotated. 
According to differences between the existing and the required values of parameters 
previously defined, each speech segment which can be extracted and used for synthesis is 
assigned target cost, and according to differences at the boundaries between two segments, 
each pair of segments which can be concatenated is assigned concatenation cost. Target cost is 
the measure of dissimilarity between existing and required prosodic features of segments, 
including duration, f0, energy and spectral mismatch. Concatenation cost is the measure of 
mismatch of the same features across unit boundaries. The degree of impairment of phones 
is also taken into account when selecting segments, as explained previously. The task of the 
synthesiser is to find a best path through a trellis which represents the sentence, that is, the 
path along which the least overall cost is accumulated. The chosen path determines which 
segments are to be used for concatenation, as shown in Fig. 3, with sij denoting segments, c’ij  
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Fig. 3. Finding the best path through a trellis representing a sentence. 

denoting segment costs and cij,pq denoting concatenation costs. Segment modifications 
related to smoothing and prosody manipulation are carried out using the TD-PSOLA 
algorithm. 
In a version which is currently under development, an alternative to the TD-PSOLA low-
level synthesis algorithm is being introduced – HMM based synthesis (Tokuda et al., 2000). 
Segmental intelligibility tests have still to be carried out, yet the first results seem to be en-
couraging. 

3. Automatic speech recognition 
AlfaNum automatic speech recognition (ASR) system as well as most of state-of-the-art 
systems is based on hidden Markov models (HMM). State emitting probabilities are 
modelled by Gaussian mixture models (GMM), with each Gaussian distribution defined by 
its mean and full covariance matrix. The parameters of each Gaussian in GMM are estimated 
using the Quadratic Bayesian classifier (Webb, 1999), which is a generalisation of the 
standard K-means classification iterative procedure. The goal of decoding in the AlfaNum 
ASR systems is to find the most probable word sequence corresponding to the input speech, 
as well as a confidence measure for each recognition. Viterbi algorithm is used for a search 
for the most probable word sequence. To accelerate the search procedure, beam search and 
Gaussian selection (Janev et al., 2008) are used. 

3.1 Speech corpus 
One of the first steps in development of an ASR system is speech corpus acquisition. Since 
1998 a speech corpus has been developed for Serbian according to the SpeechDat(E) standard 
(Delić, 2000). It contains utterances from about 800 native speakers (400 male and 400 female), 
which have been recorded via the public switched telephone network. Today, the corpus 
volume is about 12 hours of speech (silent and damaged segments are excluded). A section of 
the corpus, containing 30 minutes of speech from about 180 speakers (100 male and 80 female), 
is used as the test set for the experiments. Transcriptions are at the phone level, and 
boundaries between phones are corrected manually (Obradović & Pekar, 2000). The language 
of the speech corpus is Serbian, but it is used for development of ASR applications in Croatian 
and Bosnian as well, since the phonetic inventories of these kindred languages are practically 
identical, with minor variations in pronunciation of certain phonemes. 
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3.2 Acoustic models 
For the purposes of ASR, several changes had to be introduced into the phonetic inventory 
of the Serbian language. Instead of the standard 5 vowels in Serbian i.e. /i/, /e/, /a/, /o/ 
and /u/ (IPA notation), two sets containing 5 long and 5 short vowels are taken into 
consideration. This distinction has been motivated by the fact that short vowels usually do 
not reach its target position. A vowel is marked as long, if its duration is longer than 75 ms 
and its average energy is greater than 94% of average vowel energy in the utterance 
containing the vowel, otherwise the vowel is marked as short. Phone /ə/ is regarded as a 
standard vowel as well. Moreover, closure and explosion (friction) of stops (affricates) are 
modelled separately in order to obtain more precise initial models. These models will be 
referred as sub-phones in further text. 
Acoustic features of phone are influenced by articulatory properties of nearby phones, and 
this influence is called coarticulation. In order to capture acoustic variations of phone caused 
by coarticulation, triphone (context dependent phone/sub-phone) is used as basic 
modelling unit (Young et. al., 1994). Introducing sub-phone models results in the slightly 
complex procedure for conversion of words into appropriate sequence of triphones, where 
sub-phone models are treated as a single phone. Silence and non-speech sounds (various 
types of impulse noise) are modelled as context independent units. 
The number of HMM states per model is proportional to the average duration of all the 
instances of the corresponding phone in the training database (e.g. long vowels are 
modelled by five states and stop explosions by only one state). On this way slightly better 
modelling of path in feature space is achieved at the cost of reducing the number of 
observations per state. 
The number of mixtures per HMM state is determined semi-automatically. It gradually 
increases until the average log likelihood on the validation set starts to decrease or the 
maximum number of mixtures for the given state is reached. Maximum number of mixtures 
per state depends on which model that state belongs. For example, models for fricatives /s/ 
and /∫/ have fewer mixtures per state than vowels, because the coarticulation effects on 
these fricatives are smaller than on vowels. 
Using triphones instead of monophones leads to a very large set of models and insufficient 
training data for each triphone. All HMM state distributions would be robustly estimated if 
sufficient observations were available for each state. This could be achieved by extending 
the training corpus or by including observations related to acoustically similar states. The 
second solution, known as tying procedure, was chosen as being less expensive, even 
though it generates some suboptimal models. 

3.3 Tying procedure 
The main issue in the tying procedure is how to define acoustically similar states. The vocal 
articulators are moved at relatively slow speeds and do not remain in the steady positions 
through the duration of a phone. They are moving from the position required to articulate 
the preceding phone to the position required for the successive phone, via the position 
needed for the current phone. Therefore, acoustically similar states are the states of the same 
phone at the same position in HMM (left-to-right model topology is used), which have 
phones with a similar place and manner of articulation in their context. The level of the state 
similarity depends on the similarity of its contexts. The previous phone has more influence 
on the initial HMM states than on the final HMM states, and subsequent phone has more 
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influence on the final states than on the initial. Hence the position of the state in HMM 
defines the importance of the context. For the initial state, and all states close to it, the left 
context is more important, and for the final state, all states close to it and central state (if 
such a state exists) the right context is more important (See example in Fig. 4.). It is obvious 
that the states with the same more important context and a different less important context 
are more similar than vice versa (Young et. al., 1994). 
 

 
Fig. 4. Left-to-right HMM topology with 4 emitting states. Important context for states 1 and 
2 is left, and for states 3 and 4 is right context. 
For the tying procedure, it is necessary to define phone similarity. Definition of phone 
similarity is based on our linguistic knowledge about the place and manner of articulation of 
the phone. Fig. 5. illustrates similarity level tree. IPA notation is used for the phone labels. 
Non-speech sounds like silence, background noise and unarticulated sounds are marked by 
'sil', 'int' and 'unk', respectively.  
 

 
Fig. 5. The tree of the phonetic similarity. Closure and explosion (friction) of stops 
(affricates) are treated as single context. 
The tying procedure (Fig. 6) is applied only to the states with an insufficient number of 
observations. Mark with Si the i-th HMM state of the phone Ph (i is the indicator of state 
position in left-to-right HMM topology as well). The more important context for the state Si 
is MIC and less important context is LIC. Suppose that Si has an insufficient number of 
observations for robust parameter estimation. The proposed algorithm attempts to obtain 
the additional observations for the state Si, by borrowing observations from the i-th states, 
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Fig. 6. Flowchart of the tying procedure. 

modelling the phone Ph being in different contexts. The algorithm starts with the states 
whose more important context is MIC and the less important context is any phone in parent 
node of the phonetic similarity tree for the phone LIC. If in this attempt the sufficient 
number of observations is not obtained, the algorithm extends the search to states belonging 
to the i-th state of the phone Ph whose more important context is MIC and less important 
context is any phone contained by one step higher parent node containing the phone LIC. 
The previous step is repeated until the sufficient number of observations is obtained or the 
root node is reached. If the root node is reached and a sufficient number of observations is 
not, then the algorithm tries to borrow additional observations from the i-th state of the 
phone Ph, whose the less important context is arbitrary and the more important context is 
any phone in the parent node containing phone MIC. If in this attempt a sufficient number 
of observations is not obtained, the algorithm extends the search on states, which belong to 
the i-th state of the phone Ph whose less important context is arbitrary and more important 
context is any phone in the one step higher parent node containing phone MIC. The 
previous step is repeated until a sufficient number of observations is obtained or the root 
node is reached (Delić at al., 2007).  

3.4 Vocal tract length normalisation 
Acoustic variations between training and test conditions, caused by different microphones, 
channels, background noise as well as speakers, are known to deteriorate ASR performance. 
Variations caused by speakers can be divided into extrinsic and intrinsic. Extrinsic 
variations are related to cultural variations among speakers as well as their emotional state, 
resulting in diverse speech prosody features. Intrinsic variations are related to speaker 
anatomy (vocal tract dimensions). 
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The state-of-the-art ASR systems based on HMM and GMM are sensitive to differences in 
training and test conditions, which result in serious degradations of performance (Molau, 
2003; Benzeghiba et al., 2006). One of the common methods to reduce spectral variations 
caused by different vocal tract length and shape is vocal tract length normalisation (VTN). 
There are several algorithms proposed in the literature. There are two approaches based on: 
i) formant position and ii) maximum likelihood criterion. The goal of the algorithms based 
on formant position is to find spectrum frequency warping function which map average 
(sample mean or median) formant position of some speaker into average formant position of 
universal speaker (Gouvea & Stern, 1997; Jakovljević et al., 2006).  On the other hand, the 
goal of the algorithms based on the maximum likelihood criterion is to find spectrum 
frequency warping function, which transforms feature vectors of some speaker on the way 
which leads to increased theirs likelihood on the universal speaker model (Lee & Rose, 1996; 
Welling at al., 1999). Modification of this approach is presented in (Miguel et al., 2008) 
where this transformation is incorporated into a so called 2-D HMM model. 
The work presented in this chapter is based on (Welling et al., 1999). Piecewise linear 
spectrum warping function is chosen as the most effective one and its implementation the 
simplest one.  
It is defined as: 
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where ω is the original frequency and ωα scaled frequency and α VTN coefficient.  In order to 
reduce search space, VTN coefficients are discrete and usually take values from 0.88 up to 
1.12 with step 0.02. 
The criterion to choose VTN coefficient is: 

 ,argmax ( | ; )r r r kP X Wαα
α λ=  (5) 

where Xr,α are all feature vectors which belong to the speaker r normalised by the VTN 
coefficient α, and Wr are the corresponding transcriptions, and λk model of the universal 
speaker. 
The training procedure can be summarised into two steps:  
1. VTN coefficient estimation for each speaker in the training phase;  
2. Training of HMM models which will be used in the recognition process.  
Additionally, the test procedure basing on a multiple pass strategy includes three steps: 
1. Initial recognition of the original (unnormalised) sequence of the feature vectors using a 

speaker independent model set. The output consists of initial transcription and 
phoneme boundaries; 

2. VTN estimation using initial transcription generated in the previous step. The 
procedures of VTN coefficient estimation are the same as those in the training process. 
Note that estimation of VTN coefficients in the test procedure is burdened with 
additional uncertainty because initial transcriptions and phone boundaries can be 
incorrect (which is not the case in the training phase); 

3. Final recognition of the sequence of feature vectors normalised by the VTN coefficient 
estimated in the previous step. The VTN coefficients are estimated by using a speaker 
independent ASR system trained on the normalised features. 
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The models with one Gaussian per HMM state are chosen as models for VTN estimation, 
because of their general nature and the fact that they do not adapt to the features of a parti-
cular speaker, unlike HMM models with more than one Gaussian mixture per state (Welling 
et al., 1999). 
We claim that the disadvantage of the standard procedure for VTN coefficient estimation 
defined by (5) is it’s favouring of longer and more frequent phonemes (their frames are 
dominant in likelihood estimation of the sequence). Here we suggest several optional 
criteria. For the sake of convenience the method described by (5) in the further text will be 
referred to as M0.  
In order to eliminate the influence of phone duration on VTN coefficient estimation, the 
value which maximises average likelihood per phone instance should be used as VTN 
coefficient. The term “phone instance” stands for one particular realisation of corresponding 
phoneme in the speech corpus. This criterion can be summarised as: 

 , ,
1

1arg max ( | ; )
piN

r n n r n k
npi

P X W
N αα

α λ
=
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where Pn(Xn,r,a|Wn; λk) is the likelihood of the phone instance Wn on the universal model set 
λk and the observations belonging to the given phone instance Xn,r,a, Npi is the number of the 
all phone instances belonging to the speaker r. The scaling factor 1/Npi is not essential, but 
for comparison of the average values between different speakers it is. The likelihood of the 
phone instance can be calculated as sample mean or sample median of the likelihoods of the 
observations belonging to the phone instance. The first variant in the further text will be 
referred to as M1 and the second as M2. Favouring phonemes with more instances in the 
corpus was motivated by the idea to choose a VTN which results in higher likelihood for a 
larger number of phone instances, and in vowels as most frequent phonemes. The weakness 
of this method is that it does not result in the optimal increase of word sequence likelihood, 
since phone instances of longer durations have greater influence than phone instances of 
shorter durations. Note that the goal of training and test (decoding) procedure is to obtain 
the maximum likelihood of word sequence. The motivation for M2 method is similar to the 
one for the M1 method, with an additional aim of experimenting with robust methods for 
estimation of likelihood of phone instances. With the use of sample median instead of 
sample mean the influence of extremely low and high values of feature vector likelihood is 
eliminated. 
In order to eliminate the influence of phone duration and frequency in VTN coefficient 
estimation, the value which maximises average likelihood per phoneme should be used as 
the VTN coefficient. The likelihood per phoneme represents the average of the likelihoods of 
all feature vectors belonging to the given phoneme. We proposed four variants which differ 
in the way how average likelihood per phone and average phone likelihood is calculated. 
The method, which is in further text referred to as M3, calculates both average likelihood 
per phoneme and average phoneme likelihood as sample mean. The method referred as M4 
is similar to the M3, but it calculates average phoneme likelihood as sample median. The 
methods referred to as M5 and M6 are similar to the M3 and M4 respectively, but they 
calculate average likelihood per phoneme as sample median.  
None of the methods M3-M6 results in the increase of the likelihood of word sequence. The 
M4 method represents a robust version of the M3 method. The explanation is the same as 
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the one for the M2 method. The M5 and M6 methods represent robust versions of the M3 
and M4 methods respectively. The use of sample median instead of sample mean results in 
the elimination of influence of extremely low and high values of phoneme likelihoods. 
None of the proposed methods take into consideration non-speech, damaged segments and 
segments with occlusions of plosives and affricates. All of them use the same initial model 
set (with one Gaussian per state). All final model sets have the same topology i.e. the 
number of models, states and mixtures. 
The standard features used in VTN estimation procedure are the same as the features used 
in the recognition process. This approach is based on the reasoning that a VTN coefficient 
should reduce inter-cluster variations for both static and dynamic features, although the 
theoretical motivation for VTN includes only spectrum envelope modifications (static 
features). 
However, in the histogram which represents the frequency of the VTN coefficients in the 
training corpus, there is a significant peak at 1.04 for the female speakers, as shown in Fig. 7. 
The analysis of the causes which lead to the peak at 1.04 in the histogram included the 
analysis of the curves describing the dependency of average likelihood on VTN coefficients. 
These are the curves used for VTN estimation (the estimated value of a VTN coefficient is 
the point where the curve reaches its maximum). These curves for a majority of the female 
speakers with estimated VTN value equal to 1.04, are bimodal (two close local maxima, as 
shown in Fig. 8. a)) instead of unimodal (only one local maximum, as shown in Fig. 8. b)), 
the latter being expected as more common. 
Excluding dynamic features from the VTN estimation procedure results in a unimodal 
shape of the decision curves for all speakers. The values of word error rate WER on the 
standard test corpus for all estimation methods are presented in Table 1. The cases when 
only static and both static and dynamic features are used are given in the first and second 
row, respectively. The results show that if dynamic features are omitted, the WER is smaller 
for a majority of the proposed methods of VTN estimation. In the case of M6 method, the 
opposite result is caused by smaller efficiency of the sample median in the test phase. The 
same holds for the M5 method, but the result was not contrary to the majority. 
 

 
Fig. 7. The histogram of VTN coefficients for male and female speakers in the training 
corpus in case of M0 estimation method. For other proposed methods similar histograms are 
obtained. 
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Fig. 8. a) The examples of the bimodal shapes of the VTN decision curves typical for the 
most female speakers with VTN coefficient equal to 1.04.  b) The examples of unimodal 
shapes of the VTN decision curves typical for the majority of the speakers. 
 

 M0 M1 M2 M3 M4 M5 M6 
s 4.28 4.52 4.38 4.07 4.38 4.38 4.59

s+d 4.45 4.66 4.80 4.66 4.38 4.90 4.49

Table 1. The values of WER for the methods of VTN estimation depending on whether static 
or both static and dynamic features are used 
 

 M0 M1 M2 M3 M4 M5 M6 
norm. 4.28 4.52 4.38 4.07 4.38 4.38 4.59

unnorm. 5.07 5.31 5.11 4.76 4.55 5.42 4.61

Table 2. The values of WER for the methods of VTN estimation in case the HMM set is 
trained on normalised (norm.) or unnormalised (unnorm.) features 
The motivation to explore the necessity for the iterative VTN coefficient estimation in the 
training phase is based on the fact that initial results showed significant differences 
depending on whether an HMM set, used for the VTN estimation, was trained on the 
normalised or on the unnormalised set of features. The results are shown in Table 2. Note 
that both HMM sets used in the VTN estimation procedure have the same complexity i.e. 
they consist of a single Gaussian density per triphone state. These differences suggest that 
VTN values estimated in the training phase could be improved (so as to result in a lower 
WER), suggesting that an iterative procedure should be adopted.  
The iterative procedure can be summarised into the following three steps: 
1. An HMM set λk, in the k-th iteration step, containing triphone states with a single 

Gaussian density, is trained on the feature vectors normalised by appropriate VTN 
coefficients for each speaker. The VTN coefficient values are in the initial step equal to 1 
for all speakers and in the other steps equal to the values estimated in the previous step. 

2. For each speaker in r the training corpus, a VTN coefficient αr is chosen as the value 
which maximises the average likelihood per observation or phone instance or phoneme 
depending of method (M0-M6). 

3. Repeat steps 1 and 2 until the number of changes or average change becomes sufficiently 
small. In this paper, the stopping condition is satisfied when the average change of VTN 
coefficients becomes smaller than one half of the VTN coefficient step (i.e. 0.01). 
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 #sub #ins #del WER[%] RI1[%] RI2[%] RI3[%] 
REF1 94 56 9 5.94    
REF2 94 51 8 5.28    
M0 65 44 6 3.97 27.7 24.8 11.1 
M1 65 39 5 3.76 31.4 28.7 16.8 
M2 60 36 5 3.49 36.5 34.0 20.3 
M3 69 42 8 4.11 25.2 22.2 10.0 
M4 64 46 7 4.04 26.4 23.5 11.1 
M5 66 39 5 3.80 30.8 28.1 16.0 
M6 69 50 9 4.42 19.5 16.3 2.2 

Table 3. Performance of the analysed system and its relative improvement in comparison to 
three referent systems (REF1, REF2, original M0). The method M0, whose performance is 
shown in the table, is different from the original M0 in that it uses only static features and 
iterative procedure for VTN estimation. 

The complete results are presented in Table 3. The first referent system (REF1) represents a 
speaker independent ASR system. The complexity of this system is the same as the 
complexity of all systems which used VTN. The second referent system (REF2) is a gender 
dependent ASR system, with slightly smaller complexity than the other ASR systems which 
are analysed. The remaining systems include VTN estimation, differing between themselves 
in the type of VTN estimation used. Their relative improvements (RI) in comparison to 
REF1, REF2 and basic M0 method proposed in (Welling et al., 1999) are presented in the last 
three columns of Table 3, respectively. 
All VTN system results in significant RI comparing to the referent systems REF1 and REF2. 
VTN methods M1 and M2 achieve the best performance, but McNemar test  (Gillick & Cox, 
1989) shows that the differences are not statistically significant in comparison to the method 
M0 (only static features and iterative VTN estimation procedure), M4 and M5. 
Some of the proposed VTN estimation methods results in noteworthy RI comparing to 
baseline VTN methods (see RI3 for M1 and M2). These differences are proved statistically 
significant by McNemar test. A possible explanation could be that vowels are frequent 
phonemes and they contain more information about vocal tract length then other phonemes. 
The VTN estimation methods which disregard frequency and duration of phonemes (M3-
M6) demonstrate significant variations in WER depending on whether the sample mean or 
the median is used. These variations are probably the result of an insufficient number of 
instances in the test phase. The results of the experiments with fast VTN tests support the 
previous statement (Jakovljević, 2009). The improvement in the case of M4 and M6 is minor, 
which can be explained by small efficiency of sample median used for estimation of average 
phone likelihood on the test set.  

3.5 Gaussian selection 
In order to obtain a high level of accuracy, HMM based CSR systems typically use 
continuous densities. Most of them tend to operate several times slower than real time 
which eventually makes them too slow for any real–time application. In such systems, 
calculation of state likelihoods makes up a significant proportion (between 30-70%) of the 
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computational load. Actually, each state usually contains a significant number of Gaussian 
components in the corresponding mixture that are all separately evaluated in order to 
determine the overall state likelihood. Many techniques could be applied in order to reduce 
the computations required. Some of them target dimensionality reduction (like linear 
discriminant analysis  or heteroscedastic linear discriminant analysis), some of them tying of 
acoustical states (semi-continuous HMM models), and there is also a number of fast 
Gaussian Selection (GS) methods that for each frame obtain the desired set of baseline 
Gaussians to be calculated exactly, based on a pre defined data structure. Of course, the goal 
is to increase the speed of speech recognition system without degrading the recognition 
accuracy. There are two distinct classes of GS methods: bucket box intersection (Woszczyna 
et al., 1997) and clustering (Bocchieri, 1993), (Knill et al., 1996), (Knill et al., 1999). We 
developed our own GS method, which is described in detail in (Janev et al., 2008). 
The basic idea behind the clustering GS method is to form hyper-mixtures by clustering 
close baseline Gaussian components into a single group (clusters) by means of Vector 
Quantisation (VQ) assigning to each cluster unique hyper-density (almost always Gaussian) 
with parameters estimated in the appropriate way. In the decoding process, only those 
baseline Gaussian components belonging to clusters with corresponding hyper-densities 
whose “distance” to the particular speech frame is above predefined threshold are 
calculated directly, while the likelihood of others are floored with some approximate values. 
It significantly improves computational efficiency with relatively small degradation in 
recognition performances (Janev et al., 2008). There is no problem if the overlaps between 
Gaussian components are small, and their variances are of the same range. However, in real 
case, there are numerous models which do not fit this profile. Actually, significant 
overlapping between Gaussian components is common situation in CSR systems.  
Baseline VQ based Gaussian selection is based on (Bocchieri, 1993). Actually, during the 
training phase the acoustical space is divided up into a set of VQ regions. Each Gaussian 
component (mixture) is then assigned to one or more VQ codewords (VQ Gaussian mixture 
clustering). During the recognition phase, the input feature vector is vector quantised, i.e. 
the vector is mapped to a single VQ codeword. The likelihood of each Gaussian component 
in this codeword shortlist is computed exactly, whereas for the remaining Gaussian 
components the likelihood is floored i.e. approximated with some back-off value. The 
clustering divergence that we have used in VQ based approach was of course different than 
the one that used in (Bocchieri, 1993) because it is not suitable enough for application with 
full covariance Gaussians. It was taken from the more theoretical works presented in 
(Goldberg et al., 2005) and (Banerjee et al., 2005). It is the most appropriate and theoretically 
motivated approach for the simplification of a large Gaussian mixture (with large number of 
components) into smaller (Shinoda et al., 2001), (Simonin et al., 1998), which is a significant 
part of the problem in the GS clustering approach. It can be showed that generalised k-
means clustering leads to the local minimum of the target function that represents 
symmetric KL divergence between the baseline Gaussian mixture f and its simplification g: 
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where fi and gj are components of mixtures f and g, and ai is the occupance of fi. This is 
actually a generalisation of the well known Lindo-Buzo-Gray algorithm (Knill et al., 1996), 
(Lindo et al., 1995). The algorithm actually obtains the local minimum of D(f||g) by 
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iteratively repeating REGROUP and REFIT steps. In the REGROUP step, every baseline 
Gaussian component θm is assigned to the unique cluster chosen so that the symmetric KL 
divergence KL(θm, θf) to the hyper-Gaussian θf that corresponds to cluster is minimal. In the 
REFIT step, parameters of the “new” hyper-Gaussian (cf, Σf) that correspond to the 
particular cluster are estimated in the Maximum Likelihood manner i.e. equivalently as the 
ones that minimise the KL divergence between the underlying Gaussian mixture that 
corresponds to the particular cluster and the actual hyper-Gaussian (Banerjee et al., 2005): 
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The term Wf is the pool covariance matrix of the f-th cluster, while wm is the mixture cluster 
occupancy (the whole concept could be given strait forward in the terms of soft posterior 
probabilities obtained using Baum Welch algorithm, but are omitted for the simplicity as in 
(Janev et al., 2008)).  
The main idea how to decrease the influence of significant overlapping of baseline 
Gaussians is for GS process to be driven by the eigenvalues of covariance matrices of 
Gaussians to be selected. The basic idea is to group the baseline Gaussian components on 
the basis of their eigenvalues into several groups, before the actual VQ clustering is applied 
on each group separately. The method is referred as Eigenvalues Driven Gaussian Selection 
(EDGS). If the baseline VQ clustering is performed on the whole set of Gaussian 
components, then at the end of the procedure, in some cluster, there could be both 
components for which the eigenvalues of covariance matrices are predominantly large, and 
those for which the eigenvalues of covariance matrices are predominantly small. This is 
especially the case if the degree of Gaussian components overlapping is high, because many 
low-variance mixtures could be masked by high-variance ones and thus assigned to the 
same cluster. This comes as a consequence of the use of symmetric KL clustering distance, 
more precisely, its Mahalanobis component. As a result, the covariance matrix of the hyper-
Gaussian that corresponds to a cluster can have predominantly large eigenvalues, although 
there are many baseline Gaussian components belonging to that cluster with predominantly 
small eigenvalues of covariance matrices.  
Baseline Gaussian components are masked by high-variance (“wide”) ones, thus in the 
decoding process the following can happen. If the likelihood of a hyper-Gaussian evaluated 
on the input vector is above the predefined threshold, all baseline components in the cluster 
will be evaluated for that particular input vector.  
The performance of a Gaussian selection procedure is assessed in terms of both recognition 
performance and reduction in the number of Gaussian components calculated. Reduction is 
described by the computation fraction CF, given as CF = (Gnew + Rcomp)/Gfull, where Gnew and 
Gfull are the average number of Gaussians calculated per frame in the VQGS and the full 
system respectively, and Rcomp is the number of computations required for the system to 
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calculate log-likelihoods of hyper-mixtures in order to decide whether the mixtures 
belonging to that cluster will be evaluated or not. The evaluation will include even those 
mixtures with low likelihood values that should have been excluded from the evaluation in 
order to obtain a sufficient reduction in computational load and at the same time not to 
change WER significantly. The result is the increase in both CF and WER. It is essentially for 
EDGS to work that we keep the average number of baseline components in cluster navr 
reasonably small. Nevertheless, the similar constraint must also be met in order to obtain 
satisfactory recognition accuracy of any GS system. 
As a result of situations when low-variance (“narrow”) components are masked by high-
variance (“wide”) ones, in the decoding process the following can happen. If the likelihood 
of a hyper-Gaussian evaluated on the input vector is above the predefined threshold, all the 
baseline components in the cluster will be evaluated for that particular input vector. The 
evaluation will include even those components with low likelihood values that should have 
been excluded from the evaluation in order to obtain a sufficiently low CF and at the same 
time not to change WER significantly. The result is the increase in both CF and WER. Thus, 
EDGS proceeds with the combining of the most significant eigenvalues of the baseline 
Gaussian covariance matrices in order to group them in the predefined number of groups, 
prior to the execution of the VQ clustering on each group separately. The largest eigenvalues 
are the most important for mixture grouping and their relative importance decreases with 
their value. For the aggregation of the value on the base on which the particular Gaussian 
component is to be grouped, we have proposed the usage of Ordered Weighted Average 
OWA aggregation operators (Janev et al., 2008). The idea is to give more weight to more 
significant (larger) eigenvalues in the aggregation process, thus optimising the OWA 
weights. They are to be applied to the particular eigenvalues vector λ = (λ1,…, λp) in the 
following way: 
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where 0 ≤ λσ(1)≤ …≤ λσ(p). Depending on the OWA values, mixtures are divided into groups. 
The coefficients ω ∈ Rp satisfy the constrains that 0 ≤ ωj ≤ 1 and they sum to one.  
The OWA operators provide a parameterised family of aggregation operators which include 
many of the well known operators such as the maximum, the minimum, k-order statistics, 
median and the arithmetic mean. They can be seen as a parameterised way to interpolate 
between the minimum and the maximum value in an aggregation process. In this particular 
application, the applied operator should be somewhat closer to max(·) in order to favour 
more significant eigenvalues in the grouping process. The method to optimally obtain OWA 
coefficients introduced in (Yager, 1988) and used in (O’Hagan, 1988) is applied. The maxness 
M(ω) = α ∈ [0,1] of the OWA operator is defined as: 
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The idea is to maximise dispersion of weights D(ω) defined (O’Hagan, 1988) as 
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thus obtaining the Constrained Nonlinear Programming (CNP) problem (O’Hagan, 1988). 
For finding the optimal weights ωopt, any standard method can be used (Biggs, 1975), 
(Coleman et al., 1996). In the sequel, we give the baseline VQGS and EDGS algorithms as 
follows: 
VQGS 
Initialisation: 
• For predefined navr and the overall number of mixtures M, calculate the number of 

clusters as: Nhpc = |X| ={M/navr}. 
• Pick up at random (uniform distribution) Nhpc different centroids cf f ∈ {1,…,Nhpc} from 

the set of overall M mixture centroids used. Assign to every centroid the identity 
covariance matrix Σf = I. Let Gaussian densities X(0) = {χf(cf, Σf): f = 1,…,Nhpc}  be initial 
hyper-mixtures. 

Clustering:  
Do the following, for predefined ε > 0 
• To all mixtures θj, j = 1,…M assign a corresponding hyper-mixture χ(j) in the current k-th 

iteration as: χ(j) =argmin d(θj, χ), where d(·,·) is symmetric KL divergence. 
• Evaluate hyper-mixture parameters cf  and Σf using ML estimates (8), (9) and (10), to 

obtain X(k) 
• If any cluster “runs out” of mixtures, set Nhpc = Nhpc - C  for the next iteration, where C is 

the number of such clusters. 
Until Daverage < ε, for Daverage defined by (7). 
EDGS: 
Initialisation: 
• Specify the number of groups G.  
• Using any CNP method, obtain optimal OWE weights for predefined maxness α∈[0,1] 

as: ωopt = argmax D(ω), satisfying constraints M(ω) = α, that 0 ≤ ωj ≤ 1 and they sum to one. 
• For ωopt, determine the group threshold vector (elements are group borders) τ = [τmax(1),… 

τmax(G-1)], and set τmin(g+1) = 0, τmax(g)= = ∞. The group borders should satisfy the 
constraint: τmax(g+1) = τmax(g), for g = 1,…,G-2, where τmax(1) is obtained heuristically.  

Mixture Grouping: 
For every i = 1,…,M, for mixture θi do: 
• Obtain eigenvalues λ(i) = (λ1(i),…, λp(i)). 
• Assign θi to the group giff: OWEωopt(λ(i)) ∈[τmin(g), τmax(g))  
Perform baseline VQGS method on every group separately to obtain clusters with mixtures 
and corresponding hyper-mixtures. 
The decoding process is given as follows  
Decoding: 
For all observations xt, t = 1,…,N, where N is the number of observations in the testing 
process do for every cluster Ck, k=1,…,Nhpc do: 
• Evaluate log-likelihood ln f(xt, χ(k)), where χ(k) is the hyper-mixture that corresponds to 

cluster Ck. 
• If ln f(xt, χ(k)) >θ, where θ is a predefined likelihood threshold, evaluate the exact 

likelihood for all mixtures that belong to the cluster Ck. Else, set all belonging mixture 
log-likelihoods to ln f(xt, Θ(k)) where Θ(k)) is the Gaussian mixture with centroid ck and 
covariance matrix Wk defined by (10). 
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5. Conclusion 
Both ASR and TTS systems described in this chapter have been originally developed for the 
Serbian language. However, linguistic similarities among South Slavic languages have 
allowed the adaptation of this system to other South Slavic languages, with various degrees 
of intervention needed. 
As for ASR, adaptation to Bosnian and Croatian was very simple (due to extreme similarity 
of phonetics), whereas for Macedonian it was necessary to develop separate speech data-
bases. The actual procedures used for ASR were almost identical in all cases. While well 
known algorithms were used for model training and testing, in this chapter only the original 
algorithms are presented. The VTN procedure based on the use of the iterative method and 
only static features for VTN coefficient estimation shows significant improvement in 
comparison to the common VTN procedure. The eigenvalue driven Gaussian selection 
significantly reduce computational load with minor increase of WER. Neither of the 
proposed algorithms is language dependent. 
As for TTS, conversion of an arbitrary text into intelligible and natural-sounding speech has 
proven to be a highly language-dependent task, and the degree of intervention was variable 
and depended on specific properties of a particular language. For example, the simplicity of 
accentuation in Macedonian has allowed POS tagging and syntactic parsing to be avoided 
altogether, at the price of certain impairment in quality of synthesis. On the other hand, for 
Croatian and Bosnian, it was also necessary to build new accentuation dictionaries and to 
revise the expert system for POS tagging in order to assign words their appropriate 
accentuation, necessary for production of natural sounding speech. 
It can be concluded that, in spite of the apparent language dependence of both principal 
speech technologies, some of their segments can be developed in parallel or re-used. The 
ASR and TTS systems described here are widely applied across the Western Balkans. In fact, 
practically all applications of speech technologies in the countries of the Western Balkans 
(Pekar et al., 2010) are based on ASR and TTS components described in this chapter. 

5.1 Directions for future work 
The team at the University of Novi Sad is a core of a greater multidisciplinary team in 
Serbia, whose aim is to further increase the quality of synthesised speech and the accuracy 
and robustness of ASR. The ultimate goal is to incorporate ASR and TTS into (multimodal) 
spoken dialogue systems, to expand ASR to larger vocabularies and spontaneous speech, 
not only in Serbian but in other South Slavic languages as well. Development of speech 
technologies for a language represents a contribution to the preservation of the language, 
overcoming language barriers and exploiting all the benefits coming from the use of speech 
technologies in one’s native language. 
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